NEW LIFT

NEUE ELEKTRONISCHE WEGE

Field Bus Controller

Manual

Publisher NEW LIFT Steuerungsbau GmbH

Lochhamer Schlag 8
D-82166 Gräfelfing
Phone: +49 (0) 89 / 89866 - 0
Fax: +49 (0) 89 / 89 866-300

Doc. No. FST_HB.EN04/03

Date of issue 04/03

Software version V1.100-0233

Copyright © 2003, NEW LIFT Steuerungsbau GmbH
All rights including those of copying and reproduction of parts of this description and of the translation are reserved by the publisher.

No part of this description may be reproduced in any form or copied with an electronic replication system without the written permission of the publisher.
1 About this manual 5
1.1 General 5
1.2 Signs and Symbols used 5
1.3 Further information 6
2 General Safety Regulations 7
2.1 Standards and regulations applied 7
2.2 Electromagnetic compatibility (EMC) 8
2.3 Handling electronic components 8
$3 \quad$ FST-Controller user interface 9
3.1 LC-Display and messages 10
Main screen 10
Line A 10
Line B 11
Line C 14
Line D 27
Information texts 28
Information page 30
3.2 Keypad functions 32
When switching on 32
Main screen 32
Main menu and test menu 33
Error list 33
Information page 33
3.3 LEDs 34
3.4 HHT handheld terminal 35
Selection of the FST when using a group controller. 36
4 Technical Data 37
4.1 Component overview - bus plan 38
4.2 FST-Controller 39
4.3 VSM pre-selection module 49
4.4 VSE pre-selection extension 55
4.5 FSM car control module 58
4.6 FPM car operating panel module 65
4.7 FPE car control panel extension module 73
4.8 FPA car control panel adapter 78
4.9 ADM landing button module 82
4.10 RIO-ADM remote I/O module 86
4.11 RIO-FPM remote I/O module 89
4.12 LON bus 93
4.13 Trailing cable 95
5 Menu tree 101
5.1 General 101
5.2 MAIN MENU - Service 111
5.3 MAIN MENU - Drive 113
5.4 MAIN MENU - Config 117
5.5 MAIN MENU - Positioning 132
5.6 MAIN MENUE - Calls 139
5.7 MAIN MENUE - System 141
5.8 MAIN MENUE - Doors 144
5.9 MAIN MENU 148
5.10 TEST MENU 149
6 Error List 151
6.1 LC-Display 151
6.2 Keypad functions 151
6.3 Event messages 152
6.4 Error messages 153
$7 \quad$ Index of Key words 159

1 About this manual

1.1 General

The FST manual is a comprehensive reference work for experienced lift service experts.

Aims of this manual

- describe the characteristics of the LON bus technology
- describe the characteristics and functions of the FST and its components
- describe the operation of the FST
- describe the configuration of the FST
- describe the FST menu and its settings
- describe the messages of the FST

1.2 Signs and Symbols used

Below you can find a description of the signs and symbols used in this manual.

Symbols + Key combination: Press the linked keys simultaneously.
\leftrightharpoons Action:
Actions are executed immediately and will not be saved as permanent settings.

LC-Display and keypad
In the left column you will find the LC-Display of the FST-Controller with a grey background. The displays and messages or possible keypad functions are explained in the table.

LC-Di=Fly
Line or \quad Description of display or keypad functions
key

1.3 Further information

The following documentation is available for the FST-Controller and its components:

- Description of FST-Controller
- FST Installation \& Commissioning
- FST Quick Guide
- FST Manual (this document)
- GST Manual
- System description - Holding Device
- Installation \& Commissioning - FAX Modem
- Quick Guide EAZ-256
- Quick Guide EAZ-VFD
- Quick Guide EAZ-LCD
- Quick Guide FST-IRT
- Manual for Fireman Mode
- System description - Speech Output
- System description - Attika Control
- System description - Bank-Control
- System description - Ramp-Drive
- System description - Panel Test
- System description - Safety curtain

NEW LIFT is happy to provide this documentation on request. Please contact our marketing department.

1 General Safety Regulations

The FST-Controller must be in technically perfect condition and may only be used in accordance with regulations and in awareness of safety and risks. The "FST Installation \& Commissioning" manual as well as the relevant guidelines for the prevention of accidents and the guidelines of local power utilities must be observed.

1.1 Standards and regulations applied

The FST-Controller complies with:

- Regulation for lift systems
(German regulation for lift systems, AufzV)
- Safety regulations for the construction and installation of passenger lifts, building hoists and service lifts (DIN EN 81 Parts 1 and 2)
- Technical regulations for lifts (TRA, Technische Regeln für Aufzüge)

Operation of lift systems (TRA 007)
Testing parts and components (TRA 101)
Passenger lifts, building hoists and service lifts (TRA 200)

- Regulations for the erection of power installations with rated voltages of up to 1kV (DIN VDE 0100)
- Measures for contact voltage protection in the engine room (DIN EN 60990)
- Data sheet on safety measures during installation, maintenance and servicing or repair of lift systems (ZH 1/312)

1.2 Electromagnetic compatibility (EMC)

An accredited inspection body has verified that the FST-Controller and its components comply with the standards, limits and test intensities according to EN 12015/1995 and EN 12016/1995.

The FST-Controller and its components are:

- resistant against electrostatic discharges
(EN 61000-4-2/1995)
- resistant against electrostatic fields (EN 61000-4-3/1997)
- resistant against transient disturbances
(EN 61000-4-4/1995)
The field strengths of the electromagnetic disturbances radiated by the FST-Controller and its components do not exceed the permitted limits. (EN 55011/1997)

1.3 Handling electronic components

Leave electronic components in their original packaging until installation.
Touch a grounded piece of metal prior to opening the original packaging to prevent damage from static charges.

All bus inputs and outputs not in use must be equipped with a terminal resistance (terminator).

3 FST-Controller user interface

The user interface of the FST-Controller is located on the FST board in the control cabinet of the list system. The FST user interface consists of front panel, LCD screen, keyboard and LEDs.

Fig. 3.1 FST-Controller user interface

3.1 LC-Display and messages

The LC-Display consists of four lines A, B, C and D with 20 digits each. After switching on and during normal operation the FST-Controller displays the main screen.

Main screen

A	Maximum active state of the safety circuit
B	Active state or error
C	Status of the lift system / diagnostic message
D	Data for current drive mode

Line C has a special status. In normal mode (after switching on) it displays status messages, see "Status messages in line C" on page 14. When switching with key combination $\sqrt{s}+\square+\theta$ it displays diagnostic messages, see "Diagnostic messages in line C" on page 15.

Also see "Keypad functions" on page 32.

Line A

Safety circuit messages in Line A

Display	Description
Shety Cut Cube	The safety circuit is completely closed.
DOUR Lince Ofed	A shaft door contact is open (interruption between terminals VSM X1.2 and VSM X1.3).
Done A OPEV	Car door A is open (interruption between terminals VSM X1.3 and VSM X1.4).
Dute E OPEN	Car door B is open (interruption between terminals VSM X1.4 and VSM X1.5).
Dote C OPEN	Car door C is open (interruption between terminals VSM X1.5 and VSM X1.6).
BLEREUY STOP	An emergency switch has triggered (interruption before terminal VSM X1.6). The lift is not ready for operation.
Whupl bote open	A manual door contact is open (interruption between terminals VSM X1.5 and VSM X1.6).
ETREEUC EW GUTTH	The top emergency end switch of an hydraulic lift is interrupted according to EN 81 (interruption between terminals VSM X1.5 and VSM X1.6).

 EW EUTTH are triggered by the same safety circuit input of the pre-
selection module (TC input: VSM X1.5) and exclude each other.

Line B

State messages in line B	Display	Description
	240 Libu	The 24 V supply of the FST board (FST X7.1 and X 7.2) is below the permitted range of 24 V -10%. Check power supply and cables.
	LHWTM GRE OFP	Landing control is blocked by a safety circuit interruption (interruption of before terminal VSM X1.6), line A displays ETETEXT STOP, see "EUEEECY STOF" on page 10.
	¢HWTWE CDTROL GF	The landing control has been switched off manually. Possible switch-off points: - \square key of the FST keypad - Programmable input of an external RIO module - Input FST X7.15 - Programmable input of the FST-Controller - Key switch on the in-car control panel (FPM input X4.34) - Key switch on the landing control panel (ADM input X3.12 / X3.13) See "Source of special drive signals SET EW WE We we" on page 24.
	FTREDT	A fire input is active. Possible reasons: - Fire input on the landing control panel (ADM input X3.12 / X3.13) - Programmable input of the FST-Controller - GST Group Controller (see GST Manual) See "Source of special drive signals SETED जए we be" on page 24..
	EW-SUTCH TEST	The manual end switch test is running, see "TEST MENU" on page 149.
	ES-GPED MOW. TEST	The manual test of the deceleration monitoring function at the top and bottom limits is running, see "TEST MENU" on page 149.
	EUFGHTTOW	The controller is in evacuation mode. The source of the evacuation signal is a programmable input on the FST-Controller.
	GED FRX	The controller is in fax mode (see Installation \& Commissioning - Fax modem).

Display	Description
LTPT OFP	The controller has been switched off. Possible switch-off points: - Car light failure - Input "Car Light OFF", FST X7. 14 - Programmable input/output of a RIO module (external) - Programmable input/output of the FSTController - Externally by the GST Group Controller or the LMS lift monitoring system See "Source of special drive signals 5 CW BL
FTEDTH MODE	Fireman mode has been activated. Possible sources: - Key switch on the in-car control panel (FPM X4.4) - Programmable input/output of the FSTController - The state was saved after a power failure and has been reconstructed. Function Firemen More Feset must be used to reset this state, see "Fireman Options" on page 123. - Key switch on the landing control panel (ADM input X3.12 / X3.13) - GST Group Controller (see GST Manual) जए घW चW" on page 24.
FTE TRWGER GCTTE	The controller is in remote data transmission mode to transfer files to a GST Group Controller or to a PC.
MEPECTMO	The controller is in inspection mode (input FSM X12.2). Attention: Line A of the FST display must show BURERUY STOF!
Ch\%eration --	The calibration drive has been started. The number of remaining drives is displayed (see "Calibration drive" on page 117).
LERU DETUE GCTME	The controller performs a learn drive, see "Learn drive" on page 117.
AROU DRTE STPT	The controller performs a learn drive, see "Learn drive" on page 117.
AEMR DRTUE-GK	The learn drive has been completed, see "Learn drive" on page 117.
LERQN DETUE-GEOET	The learn drive has been aborted due to a fault. The reason for the abortion is entered in the error list, see "Learn drive" on page 117 and "Error List" on page 151.
GhETY CuThT4	The safety curtain replacing the car door has been interrupted. The contact is in the safety circuit instead of the car door contacts (see System description - Safety curtain).

Display	Description
ORt = =	An drive monitoring error has occurred. There are different types of drive monitoring functions that can shut down the lift, see "Error List" on page 151.
ThGThLMTMO MGE	The controller is in installation mode, see "Installation Mode" on page 117.
Qenturntum	The controller performs an orientation drive to the top or bottom limit after switching on (only when using incremental positioning). The orientation drive can take place automatically or when the first call is placed, see "Auto-Orien." on page 135.
PREG DRTUE MTTUE	The controller sends the car to a programmed parking floor, see "Park Drive -" on page 118.
FRTORTY LmbTH	A priority landing drive has been triggered. Possible sources: - Key switch on the landing control panel (ADM input X3.12 / X3.13) - Programmable input of the FST-Controller - Programmable input of an external RIO module
FRTRTY GR	A priority car drive has been triggered. Possible sources: - Key switch on the in-car control panel (FPM input X4.37) - Automatically after a type Auto 2 priority landing drive, see "Prio-Landing/Car -" on page 117.
MWTEmey	The controller is in auxiliary mode (input VSM X6.2). Attention: Line A of the FST display must show EREQEUCY STOF!
HOTME GCTME	The hydraulic lift is sent to the lowest landing, see "Homing Time" on page 114.
GRUTE GTTTE	The controller is in service mode, see description of the controller and "Source of special drive signals 5ए ED we we me" on page 24.
ERUMCE REUMPED	A set limit of one of the service-counters has been exceeded, see "Service-Counters -" on page 111.
$5 \mathrm{ETEM5TO}$	The controller has been stopped via the FST Menu.
DUERGHD	The overload input on the FSM or on one of the programmable inputs is active, see "FSM: X11" on page 63.
UGE ERQe --	An user error has occurred. The number of the error is displayed.
Ful Lobe	The full load input on the FSM is active, see "FSM: X11" on page 63.

Line C

Status messages in line C

Line C is divided and displays one of the following status messages in the left and in the right part. For scrolling the status messages in the left part use the key combination $\sqrt{s}+\Omega$ and for the right part the key combination s+

Status	Display	Description
Car doors	S	Door A completely open
	>R	Door A closed
	《-Hे	Door A is opening
	->¢ -	Door A is closing
	प\| ${ }^{\text {a }}$	Photocell or reversing contact door A active
	4ब	Door A is locked (test menu)
		Door is in loading mode (loading button has been pressed)
	---	Door A is stopped
	7 F	State of door A is unknown (check door limit switches)
	<>	Door open button active
	人	Door close button active
Shaft positioning	\underline{Z}	Zone message active
	F	Zone message missing
	--	Car is in levelled position
	\cdots	Car position relative to levelled position (each pixel $=2.5 \mathrm{~mm}$)
	\underline{Y}	Correction switch bottom active
	7	Correction switch top active
Car position	$\mathrm{F}=6200$	Current position of the car relative to levelling position of lowest landing in [mm]
Levelling	Fde ma	Current position of the car relative to closest levelling position in [mm]
Car speed	U $=13 \mathrm{DE}$	Current speed of the car in [mm/s]
Set / current speed	T- - - - - - -	Comparison between set and actual speed of the car. The left bar is a graphic display of the relation between actual speed and the set speed on the right.
Motor-Hours	E043E1	Operating hours of the drive
Drive counter	F2-12346	Number of completed drives
Memory occupied	Feci 4 F	Memory occupied on the PC-Card when recording.

The door positions marked with F also apply to doors E and C .

Diagnostic messages in line C

Line C can be switched from status messages to diagnostic messages with key combination $\sqrt{\sigma}+\square+\square$. Use key combination $\sqrt{\sigma}+\sqrt{\sigma}$ and $\sqrt{\sigma}$ to scroll through the diagnostic messages.

Display	Description
1Tk-Errsmbebe bbebe	Diagnosis of absolute value encoder function (see page 16), this display is irrelevant when using incremental positioning.
	Real-time display of counted increments of the encoder on plug X2. The counted increments together with the covered distance can help when calculating the required Feselstion.
Demeni FI=60 F2-b0	Current state of the FSM for door A (see page 17)
Denter Fi=60 F2-mb	Current state of the FSM for door B (see page 17)
Demex Fimbe Famb	Current state of the FSM for door C (see page 17).
	Internal motor state (see page 20) and states of the pre-selection contact outputs (see page 21).
Kownirtobl rexamem	Generated and actual position messages from the car (see page 21).
GHK5RECN	State of the safety circuit (see page 21).
	Internal NEW LIFT diagnostic message.
	Internal NEW LIFT diagnostic message.
Wextrosemf UT=42	Next possible stop (Hextposes) that can be approached and the set speed (ITT), see page 22.
Fort ExTM = EGR Pube	State of input EXIN1, see page 22.
Fort ExTOX= 日bebebe	State of input EXIN2, see page 23.
Fort HeThi $=$ EGU0	State of input H8IN1, see page 23.
Ft-k	State of the outputs on FSM X6, see page 23.
GC:BE BE BE BE BQ	Source of the special drive signals fireman, fireman mode, landing control OFF, lift off and service mode, see page 24.
LuE: 2 EGE EE FQ OE	State of the weight sensor, see page 25.
Prajstmemen = = = =	State of the project specific parts of the program (internal).
$\mathrm{PCa}=\mathrm{B}$ mi ab +b mbebs	State of the PC-Card slot, see page 26.
	Incoming and outgoing data packets of the FST-Controller in [packets/sec].
	State of the holding device, see page 26.
F9 memsmbut	Number of message packets from the FSM car control module to the FST-Controller.

Absolute value encoder

 functionITK-ErTEMEDEE BEDEE

The two numbers of the display show the number of encoder failures since the last activation of the system. The left number shows the different values resulting from double scanning, the right number shows the number of failed plausibility checks. Sporadic errors are compensated by the FST-Controller and can be tolerated. A continuous increase of one of these values indicates an encoder or cable failure.

Left number:

Display	Description
DEDE or constant value	Communication between the FST-Controller and the absolute value encoder is working correctly. Double scanning to suppress electric interference does not show any differences.
constantly rising value	Double scanning to suppress electric interference does show differences. There is electric interference on the connection cable between FST-Controller and encoder. Check connection cable and inform your NEW LIFT Hotline.

Right number:

Display	Description
EDEE	The position values of the absolute value encoder are plausible (are within the regular shaft). There are no invalid jumps in the position value.
EHE	The position values of the absolute value encoder are not plausible (are outside the regular shaft). Check direction of rotation of the encoder and commission the linear positioning function, (see Installation and Commissioning Manual).
DELTA	There are invalid jumps in the position value. Absolute value encoder faulty.

Fig. 3.2 Hexadecimal encoding of an 8-bit register

State bytes F1 and F2 describe the states of 8 functions each in real-time
(8 bits, hexadecimal code). Hexadecimal bytes are decoded digit by digit. Each digit has a decimal value according to the following table:

Hexadecimal number	Decimal value
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
\pm	10
\underline{L}	11
\%	12
d	13
E	14
$\stackrel{\square}{7}$	15

Each number codes four functions (bits) of the F1/F2 table with its decimal value. The decimal value of the number corresponds to the sum of the values of the activated functions according to the following tables.

Bit	Number	Value	Setting	Fi $=$ Byte F1
0	digit 1 (right number)	1	active	FSM car control module configured
1		2	active	Door locked
2		4	active	Door reversing
3		8	Door completely open	Limit switch "door open"
4	digit 2 (left number)	1	Door completely closed	Limit switch "door closed"
5		2	active	Photocell interrupted
6		4	active	Reversing contact
7		8	active	Minimum load input*

* Signal only relevant for door versions A and B.

Bit	Number	Value	Setting	$F 2=$ Byte F2
0	digit 1 (right number)	1	on	Car light sensor*
1		2	active	Inspection signal "fast"
2		4	active	Inspection signal "down"
3		8	active	Inspection signal "up"
4	digit 2 (left number)	1	active	Inspection signal "ON"
5		2	active	Door closing motor
6		4	active	Door opening motor
7		8	active	Door ready for drive

Example:

State byte F1 = 6c and state byte F2 = 21
This results in the following hexadecimal numbers:

F1:
Digit $1=" c "($ decimal $=12)$
Digit 2 = " 6 " (decimal $=6$)

F2:
Digit $1=" 1 "($ decimal $=1)$
Digit 2 = "2" (decimal = 2)
The decimal numbers are calculated from the following values:

F1:

Digit $1=12=8+4$
Digit $2=6=4+2$

F2:
Digit $1=1$
Digit $2=2$
This results in the following active bits:
F1:
Digit $1=8+4$
$=>$ according to the table for F1 (Digit 1) bits 2 and 3 are active =>the door is reversing and limit switch "open" has switched

Digit $2=4+2$
=>according to the table for F1 (Digit 2) bits 5 and 6 are active $=>$ the photocell is interrupted and the reversing contact has switched

F2:
Digit $1=1$ =>according to the table for F2 (Digit 1) bit 0 is active
=>the door is reversing and limit switch "open" has switched
Digit $2=2$
=>according to the table for F2 (Digit 2) bit 5 is active
=>the car light sensor is active and the door motor is closing

Internal motor states Motar $=6 \mathrm{~B}$

Internal motor states are decoded according to the following table:

Value	Motar = motor state
be	Motor ready
E1	Motor starting
ம2	Motor running
bS	Motor approaching stop position
04	Motor braking
05	Motor stopping

Internal states of the preselection relays
 ustebebe

Fig. 3.3 Hexadecimal encoding of a 16-bit register
The four digit display describes the hexadecimal coded states of the preselection relays of the VSM pre-selection module in real-time according to the following table. Hexadecimal values are decoded digit by digit as described in "States of the FSM car control module Dequ$F 2=\mathrm{BE}$ " on page 16.

Bit	Number	Value	Setting	UST = pre-selection relay
0	Number 1 (right number)	1	active	Output VSTK-0 (VSM)
1		2	active	Output VSTK-1 (VSM)
2		4	active	Output VSTK-2 (VSM)
3		8	active	Output VSTK-3 (VSM)
4	Number 2	1	active	Output VSTK-4 (VSM)
5		2	active	Output VSTK-5 (VSM)
6		4	active	Output VSTK-6 (VSM)
7		8	active	Output VSTK-7 (VSM)
8	Number 3	1	active	Output VSTK-8 (VSM)
9		2	active	Output VSTK-9 (VSE)
10		4	active	Output VSTK-10 (VSE)
11		8	active	Output VSTK-11 (VSE)
12	Number 4 (left number)	1	active	Output VSTK-12 (VSE)
13		2	active	Zone signal B
14		4	active	Safety circuit bypass K20 (VSM)
15		8	active	Enable zone switching

Position messages
Gof i Cirtobr Rembeb

The generated (virtual) and actual (real) position messages of the car describe the states of 8 switches each (8 bits, hexadecimal code) in realtime according to the following table. Hexadecimal values are decoded digit by digit as described in "States of the FSM car control module Deor-H: FI=6B F2=BE" on page 16.

Bit	Number	Value	Setting	Uirt $=$ virtual position
0	Number 1 (right number)	1	active	Level (A and B)
1		2	active	Level (A and B) with motor stopped
2		4	active	Approach area
3		8	active	Zone B
4	Number 2 (left number)	1	active	Relevelling "up"
5		2	active	Relevelling "down"
6		4	active	Enable zone switching
7		8	active	Internal use

Bit	Number	Value	Setting	Remi $=$ real position
0	Number 1 (right number)	1	active	zone message
1		2	active	Correction switch, top "CT"
2		4	active	Correction switch, bottom "CB"
3		8	active	Level (incremental)
4	Number 2 (left number)	1		Not assigned
5		2	active	Brake monitoring
6		4	active	Motor monitoring
7		8		Not assigned

States of the safety circuit The state of the security circuit is decoded according to the following table: Gh=5REC

Code	Description
\mathbf{E}	Door lock open
B	Door A open
B	Door B open
C	Car door C (manual door) open

Next possible stop
Hextpesemi

The next possible stop that can be approached by the car is decoded with hexadecimal values according to the following table:

Code	Description Hextrose=
Fi	All floors possible (car is at rest)
+e	No further floor possible (when decelerating)
	Next possible stop = code (hexadecimal)

Current set speed $1+=12$

The current set speed of the motor is decoded according to the following table:

Code	Description Ut=
UI = U8	Drive speed 1... 8 (for normal drives)
ve	Approach speed
Ui	Fast inspection speed
H:	Relevelling speed

Input EXIN1
Fot ExMi=EGRPDE
Input EXIN1 displays the states of the controller inputs according to the following table:

Bit	Terminal	Setting	Description
R	VSM X6.2	active	Auxiliary control ON
U	VSM X6.3	active	Auxiliary control UP
D	VSM X6.4	active	Auxiliary control DOWN
F	FST X7.13	not active	230V AC power supply
L	FST X7.14	active	Car light OFF
B	FST X7.15	active	Landing control OFF
E		active	GST found
		active	Alarm

Input EXIO2
Fort ExTQ=0bublen

Input/output EXIO2 displays the states of the programmable inputs and outputs according to the following table:

Bit	Terminal	Setting	Description
\boldsymbol{B}	FST X7.4	active	Programmable input/output 0
1	FST X7.5	active	Programmable input/output 1
2	FST X7.6	active	Programmable input/output 2
$\overline{3}$	FST X7.7	active	Programmable input/output 3
4	FST X7.8	active	Programmable input/output 4
\bar{Z}	FST X7.9	active	Programmable input/output 5
$\boldsymbol{\sigma}$	FST X7.10	active	Programmable input/output 6
$?$	FST X7.11	active	Programmable input/output 7

Input H8IN1
Fort HeTHI=ZEGUN

Input H8IN1 displays the inputs of the drive processor according to the following table:

Bit	Terminal	Setting	Description
0			Not assigned
1			Not assigned
U	FSM X5.5	active	Correction switch, top "CT"
U	FSM X5.7	active	Correction switch, bottom "CB"
B	VSM X4.5	active	Motor monitoring
\underline{Z}	VSM X4.6	active	Standstill monitoring
	VSM X5.4	active	zone message

FSM-X6
Fy-ki
The FSM-X6 display shows the states of the following outputs of the car control module:

Code	Terminal	Setting	L= car light
\bar{b}	FSM X6.3	active	Car light OFF
1	FSM X6.3	not active	Car light ON

Code	Terminal	Setting	car ventilator
\bar{n}	FSM X6.4	not active	Car ventilator OFF
1	FSM X6.4	active	Car ventilator ON

Code	Terminal	Setting	K= door lock solenoid
\boldsymbol{i}	FSM X6.5	not active	Door locking solenoid released
\mathbf{i}	FSM X6.5	active	Door locking solenoid activated

Source of special drive signals GC:BE BE BE BE

The special drive signals fire mode, fireman mode, landing control OFF, lift off and service mode can be activated by different signal sources (e.g. ADM, FPM etc.). The sources are displayed as follows:

Fig. 3.4 Signals sources of SRC display

Decoding of the source display:

Code	Source for fire mode signal
BI	Landing button module ADM
De	Programmable input/output of the FST-Controller
B4	GST Group Controller

Code	Source for fireman mode signal
BI	FPM car operate panel, X4.4
De	Programmable input/output of the FST-Controller
B4	State was saved after a power failure and has been reconstructed.
Be	ADM landing button module

3 FST-Controller user interface
3.1 LC-Display and messages

Code	Source for landing control OFF signal
bl	\square key of the FST keypad
W2	Programmable input/output of a RIO module (external)
04	Input "Landing control OFF", FST X7.15
be	Programmable input/output of the FST-Controller
10	FPM car operate panel, X4.34
2 e	ADM landing button module
40	Push button mode (see "Special Call Mode" on page 139)

Code	Source for lift off signal
01	Lift off after a car light failure
D2	Input "Car Light OFF", FST X7.14
04	Programmable input/output of a RIO module (external) or ADM
E8	Programmable input/output of the FST-Controller
16	Externally by the GST Group Controller or the LMS lift monitoring system

Code	Source for service mode signal
bi	External via LMS lift monitoring system
ம2	TEST MEW E Gevice mode On
04	Programmable input/output of the FST-Controller

Weight Sensor
LUE: ZGE ED FD DE

The state of the weight sensor inputs and the loading level of the car when using analogue weight sensors is displayed as follows:

Fig. 3.5 State of the weight sensor

Code	Description
ED	No PC-Card inserted
± 1	PC-Card inserted - card type not detected
± 2	PC-Card inserted - card type detected / card OK
3	PC-Card inserted - card type not detected / error
me	PC-Card memory type unknown
mi	Card type: static RAM
-	Card type: flash memory
CD	CIS memory: no CIS found
61	CIS status: CIS OK
+b	Flash type: PC-Card unknown / unusable
41	Flash type: AMD A28F040-512kB memory module
$+2$	Flash type: INTEL I28f016-2MB memory module
\%	Size of memory storage in 0.1 MB steps

State of holding

 deviceGGu: bebebeb $\mathrm{F}=\mathrm{EbO}$

The state of the holding device is decoded as follows:

Bit	Setting	Description HSU: $= \pm= \pm=$ =
$\begin{gathered} \mathrm{B} \\ \text { (right) } \end{gathered}$	active	Pump for bolt control ON
1	active	Valve "extend bolt" activated
2	active	Valve "retract bolt" activated
3	active	Limit switch "bolt extended" active
4	active	Limit switch "bolt retracted" active
E	active	Input "car bottomed" active
$\begin{gathered} \bar{\epsilon} \\ \text { (left) } \end{gathered}$	active	Input "re-pump" active

Number	Code	Description $\mathrm{P}=\mathrm{E}=\mathrm{I}$]
1 (right)	0	Standstill
1 (right)	1	Main contactors ON, waiting for star-delta start up
1 (right)	2	Lift car (approx. 30mm)
1 (right)	3	Motor run-on active
1 (right)	4	Wait for bolt to extend or retract
1 (right)	5	Bolt extended or retracted completely
1 (right)	6	Wait for input "car bottomed"
1 (right)	7	Delay after stop
2 (left)	0	No bolt movement
2 (left)	1	Bolts are retracting
2 (left)	2	Bolts are extending

Number	Code	Description $\mathrm{F}=\mathrm{I}=\mathrm{I}$
2 (left)	3	Re-pumping active
2 (left)	4	Error in bolt control

Line D

Drive mode messages
in line D

Column	Display	Description
1	T	Auto test drive active
	5	No serial connection to the frequency converter (FST X12)
	\pm	Data transmission to the frequency converter via serial connection is faulty (FST X12)
2	\dagger	Direction of travel UP
	4	Direction of travel DOWN
3-4	10	Next possible floor
5-8	[1]	In-car and landing call to target floor
	113	In-car call to target floor
	131	Landing call to target floor
	शु	In-car control blocked
	1 1-	Landing control blocked
9		Not assigned
10	C	FST is integrated in a GST Group Controller
	$=$	FST is integrated in a GST Group Controller but communication with the GST is faulty
11	e	Flashes when recording data on the PC card
	F	Card is cleared
12		Not assigned
13-20	1044412	Current time of the FST-Controller

Information texts

When triggering actions in the FST Menu information texts may be displayed. They contain information on the result of the action.

Display	Description
* ! Emereve mode ! $\%$	The controller is in emergency operation mode. Drives are not possible. Emergency operation is activated by pressing the key while switching the system on.
GDU STCK ${ }^{\prime \prime}$	The landing call from the specified floor and door side is permanently activated (is stuck).
mbm mhentimured	A landing button module connected to the shaft bus is not configured. Inform your NEW LIFT Hotline!
DRTUE THTETT OU!	The drive is locked by the LMS bus. Starting will be delayed until the connected systems have completed their acceleration phases.
Flesee umit	The triggered action has not been completed. Please wait!
FRXGE GीU OK!	A status fax has been successfully sent via the modem interface.
FRXGts -\% GT!	A fax/sms is sent to the group controller where it will be sent via the FAXmodem.
FREGUS WUT EEWT	Transmission of a status fax via the modem interface has been aborted. Check modem and telephone connection. See hHid tEDU -- Gontig ModemFerlug
FTE WUT FGWU!	The inserted PC-Card does not contain the files required for the triggered action.
Ft gotumre updete	The software of the FST is updated with a PC-Card. The progress in [\%] is displayed in line C.
Qt MPDTE COTPETE	The software update of the GST Group Controller has been completed.
FeTO CRe Hetue.	Soft priority car is waiting for standstill after the pending in-car call. See thTM
Cutibution mbort	The calibration drive has been aborted. Check function of connected drive speeds. Locate reason for abortion in the error list.
W6 ©T> ETGM	The car is on the top floor and the correction top signal is missing (only when using incremental positioning). Check function of CT switch. Check settings in Check setting of jumper JMP6 on the FST board.
W6 पe Entw	The car is on the bottom floor and the correction bottom signal is missing (only when using incremental positioning). Check function of CB switch. Check settings in MHTWEWE -- Fositionime -- Tmerempos. -CTAC-1evel. Check setting of jumper JMP6 on the FST board.
Covfr Trateree Eet	An error has occurred during copying of the controller configuration.
Covere Trpubree ok	Copying the controller configuration has been completed successfully.
Covemidy Conert	A parameter of the drive configuration is not plausible. Change a parameter in MHi WTH -- Drive and undo the change again. The information text disappears after saving the settings.
CWFTES] CORQPT	A parameter of the system configuration is not plausible. Change a parameter in mid MED -- Gotis and undo the change again. The information text disappears after saving the settings.
AREM DeTUE FRTMEE	The started learn drive has not been successful. Check function of signals zone B, correction bottom and correction top.

Display	Description
LEREN STRET FRMLUEE	The started learn drive has been aborted due to the car not moving even with pre-selection active.
DRU-TES STRTED	A drive test has been triggered.
Dev-TEST FMUSHE!	The drive test has been completed successfully.
CR \&UGQWE DETET!	The car nuisance protection function has triggered. See MHTMED -Gonit -- miti huismace
WUT TH THE ZONE:	The started learn drive can not be completed because the car is not in the door zone. Check function of Zone B signal and settings in WhT ITEUL -Fositionine -- Thorempos. -- Zoued-level. Check setting of jumper JMP7 on the FST board.
	The started learn drive can not be completed because the car is not on the lowest floor.
WUT Fett EM Flodel	The car is at an end floor. The triggered end switch test cannot be started from this floor.
OUY FROU EUE FLOER	The triggered drive test can only be started from an end floor.
PC-CRE RETUUE!	The inserted PC-Card has been removed from slot X8.
FC-GRD Flat Trege	The flash type of the inserted PC-Card is unkown. The PC-Card cannot be used.
PC-TRE ETPT	The inserted PC-Card has been cleared successfully.
PC-GRE LOL DRTGRy	The battery voltage of the inserted PC-Card is too low. Change battery!
PC-TRC OX	The inserted PC-Card has been recognized by the controller and can be used.
FC-CHO TYPE\%\%?	The inserted PC-Card has not been recognized by the controller and cannot be used.
Chekime hFdete File	The software is updated. The inserted PC-Card is checked for update files.
PEDRQTG RE¢TMET	An already started recording has been restarted.
PCCORDHE GTOPPD	Recording has been stopped.
PECDOTW \&EQ STRT!	A new recording is started.
Supreusor level	The supervisor level is accessed with a master password. It enables setting hidden parameters.
FTE WUT FGWD	The software update has been aborted. The inserted PC-Card does not contain update files.
UFDRTE FTE FDUW	The file required for the software update has been found on the PC-Card. The software is updated.
UPDPTE COPPETE	The software update of the LON module has been completed.
WFTTWETO REST".*	Automatic RESET after changing basic parameters (e.g. Dr ive time). This may take a few seconds.
EXESGTE SLPPPGE!	During the last drive of the learn drive hysteresis of the connected solenoid switches CT, CB and Zone B has been detected (only when using incremental positioning). If a value greater than 10 mm is measured this message is displayed. Hysteresis is limited to 10 mm automatically. See "ZoneB-Hysters" on page 135.
Domembembe	Nudging (forced closure) of the car door is activated. Photocell and reversing contacts are ignored. See mhT THW -- Dotes -- Detrs Gelective - Whee Time.

Information page

The information page contains important information on the individual configuration of your FST-Controller.

It can be accessed with key combination + and closed with ${ }^{6}$. The $\uparrow \sqrt{\square}$ keys are used to navigate through the information page.


```
    Hu ver = I4-4%
```



```
    ##%EMET
```

A	Information page
B	Hardware version 12-16 of the FST
C	Software version V1.100-026 of the FST
D	Release date of the software version

Messages in
lines B, C and D

Display	Description
Hu Uere 14 - 6	Hardware version of the FST board
	Software version with release date
Enct पer bub4	Software version of the operating system
F94 Uer Fgubles	Software version of the FSM car control module If no software version is displayed here there is no bus connection to the FSM (see "LON Configuration" on page 118).
FPM Uer Fpoblige	Software version of the FPM car operating panel module If no software version is displayed here there is no bus connection to the FPM (see "LON Configuration" on page 118).
Littonim	Internal identification of the controller The ID displayed here must correspond to the jumper settings of FSM and FPM (see "ID " on page 121, "FSM car control module" on page 58 and "FPM car operating panel module" on page 65).
Wenman Tin Q1 DE 2 Cl +h D	Unique ID for identification of the FST
SEtemTM. Test bench	System location or name
Fetory mumer. Fcgebed 4	Order number of the individual lift system
Sterti2\%\%r01 06:2S	Date and time of activation
की $12 \% \mathrm{~F}$	Date and time of last calibration drive
	Start date and time of the current statistics recording
	Date and time of the last change of a parameter in the FST Menu

Display	Description
CTEEMEMTME 12 BE	Date and time of the current backup copy in the internal buffer
	Date and time of the last reset of the error list
Sectevel 1	current security level of the FST

3.2 Keypad functions

The FST-Controller is operated using six keys. The keys have different functions in the different displays.

When switching on

s	Pressing and holding key during the switch-on sequence of the FST starts emergency mode. In emergency mode no drives are possible. Emergency mode is required if the FST cannot be switched on in normal mode due to a fault. The complete FST Menu and the PC-Card functions are active in emergency mode.

Main screen

(1)	Set in-car call to top floor
(1)	Set in-car call to bottom floor
\square	Switch landing control on and off (switch function)
Θ	Open test menu
國	Open main menu
S	Press before switching on and hold until the start-up sequence of the FST is completed: Emergency operation is activated, see "*!! EMERGENY MODE !!*" on page 28.
[+ 1	Set in-car call to next floor up
[+ d	Set in-car call to next floor down
S + B	Scroll through the right status messages in line C
S $+\square$	Scroll through the left status messages in line C
[+ E	Display information page
$\sqrt{s}+\square+\square$	Toggle diagnostic messages in line C on and off
$\boxed{1}+\square_{+} \square_{+}$	Controller RESET

ShFETY Ct Clued	$\sqrt{6}+\square$	Scroll diagnostic messages down
		Scroll diagnostic messages up
D6 13\#6E:E6		

Main menu and test menu

THT MEUI Drive Contig PFGEitionime		1	Move cursor up
		(1)	Move cursor down
		5	Exit submenu
		θ	Change menu level
		E	Select submenu / menu item

Chate Setine	(1)	Increase value
	-	Decrease value
	\square	Move cursor left
134460	Θ	Move cursor right
	國	Confirm settings

Error list

	\1	Switch to 2nd to 8th information byte in line D
28.09 10.18.26 [0121	1	Switch to initial display in line D
	[${ }^{\text {a }}$ +	To last error message
		To next error message

Information page

- Fi Intormition	
Hib Uer ${ }^{\text {a }}$-16	
	Gu UEE "U1 166-6026
	"1865 199

$\boxed{\square}$	Scroll one line up
\square	Scroll one line down
\square	Back to main screen
\square	

3.3 LEDs

Three LEDs on the front panel of the FST-Controller display the device status.

LED	Colour	State	Reason	Action
RUN	green	on	Power on	
			The hardware of the FST-Controller is working correctly.	
		off	No power	Check 24 V power supply of the FSTController.
			The hardware of the FST-Controller is faulty.	Inform your NEW LIFT Hotline!
STATUS	green	on	The drive processor is working correctly.	
		flashing	Landing control OFF	\square switches the landing control on again.
		off	Fault in the drive processor.	Inform your NEW LIFT Hotline!
ERROR	red	on	A drive is not possible.	Line B shows the reason of the error. A drive is only possible after the error has been corrected.
		flashing	One or more errors have been added to the error list.	The ERROR LED goes out after the error list has been called up.
		off	There is no error or event.	

3.4 HHT handheld terminal

The HHT handheld terminal enables operation of all control functions of the FST-Controller for commissioning and maintenance independent of location. The handheld terminal can be connected to the LON bus at any place.

The user interface of the HHT is identical to that of the FST-Controller, see page 10.

Fig. 3.6 HHT handheld terminal

Selection of the FST when using a group controller

When using a group controller, all FST-Controllers access the LON bus at the same time. This means that after connecting the HHT handheld terminal the desired FST-Controller must be selected. After connecting the HHT defaults to FST-Controller A.

If key is pressed for more than three seconds the screen displays:

-- Fiterminm Un ib -	1/	Select the desired FST-Controller (E...i-i)
Gommect torgion	國	Confirm selection. If the display flashes after confirmation, no connection can be established to the selected FST-Controller.

The selection is preserved during power failures.

4 Technical Data

The FST Lift Controller from NEW LIFT is a result of years of product experience in the area of controller design for lift systems and close cooperation with various component manufacturers, technical regulatory authorities and our customers.

The lift control system consists of the FST main circuit board with the user interface, electronics modules and cables. The individual components of the FST Lift Controller are described and dimensions, jumpers, LEDs, terminals and plugs are explained. All FST components described in this manual are shown in the component overview Fig 5.1 on page 38.

All electronics module designs from NEW LIFT are one hundred per cent compatible. Drill-hole dimensions, jumpers or pin assignments are not changed when the electronics modules are modified.

4.1 Component overview - bus plan

NEW LIFT provides an overview of the individual components known as "bus plan" that is supplied with the circuit documentation of each lift system. For each electronics module installation site, associated bus and the respective length of LON bus cables are specified in the bus plan. Each electronics module is clearly labelled on the circuit board. Using this labelling, the individuals components are assigned on the bus plan.

Fig. 4.1 FST-Controller component overview (bus plan)

4.2 FST-Controller

All standard types of cable and hydraulic lifts can be operated using the FST-Controller. The pre-assembled FST-Controller can easily be adapted to any individual lift system on site using the FST Menu. New software versions can be easily installed at any time via the PC-Card slot without changing system-specific settings.

Components and features of the FST-Controller:

Components:

- FST main circuit board with separate processors for call processing, drive control and bus management
- Integrated repeater for electrical isolation of shaft and lift car buses
- RS-585 / RS-422 / RS-232 controller interfaces for communication with drive regulators
- Encoder interface for connecting common absolute and incremental encoders
- Flash memory and battery-buffered RAM for an error memory with up to 100 entries
- PC-Card / PCMCIA slot for using memory cards
- RS-232 modem interface for remote data transmission, FAX and PAM functions
- RS-232 PC interface (laptop on site)
- LC-Display with 4×20 characters (ASCII character set)
- Keypad for intuitive navigation in main and test menus
- 8 programmable inputs and outputs on the FST main circuit board
- 72 programmable inputs and outputs on additional RIO Modules

An overview of the features and functions of FST-Controller can be found in the description of the FST-Controller.

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Power consumption	300	mA
	Length \times width \times height	$200 \times 210 \times 50$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.2 FST-Controller

Fig. 4.3 FST jumpers and GND-PE coupling

Jumper JMP1

Output encoder-B simulation

The encoder-B signal internally generated by the controller for zone switching can be connected to terminal VSM X5.6 via jumper JMP1. Jumper JMP1 is usually not plugged. Only set this jumper if the external solenoid switch zone switch B is not connected (see "FSM: X5" on page 62 and MTH MUU - Fositionime - Guber - Zone metue).

Function	JMP1
External zone switch B connected to FSM X5.3	open
No external zone switch B connected to FSM X5.3	plugged

Jumper JMP2 Emergency stop recognition

The fast emergency stop recognition deletes the drive command of the frequency converter before the motor contactor drops and starts throwing out sparks. Jumper JMP2 defines the response time of the emergency stop recognition.

Function	Response time	JMP2
Fast emergency stop recognition	5 ms	open
Normal emergency stop recognition	30 ms	plugged

Jumper JMP3 Service jumper

JMP3 (service jumper) is not plugged.

Jumper JMP4 Encoder jumper X2, pin 8

With jumper JMP4 signal X2.8 can be bridged with GND. This jumper is required for absolute value encoders with input for direction of rotation. Do not plug JMP4 with incremental value sensors.

Encoder type	X2, pin 8	JMP4
Absolute value encoder	Direction of rotation	plugged
Incremental value encoder	Line A (inv.)	open

Jumper JMP5 Power supply X2

Jumper JMP5 determines the supply voltage of encoder connection X2. Jumper JMP5 must always be plugged.

Power supply	JMP5
24 V DC	$1-2$
5 V DC	$2-3$

Jumper JMP6 Potential of correction switches CB and CT

When using incremental encoders correction switches CB and CT are required for floor correction at the top and bottom landings. Jumper JMP6 defines the switched potential of the correction switches. Jumper JMP6 must always be plugged when using incremental positioning.

Potential	JMP6
switched + 24V DC	$1-2$
switched GND	$2-3$

Jumper JMP7 Potential of the external zone switch B (open on floor)

Jumper JMP7 defines the switched potential of the external zone switch B. Jumper JMP7 must always be plugged.

Potential	JMP7
switched + 24V DC	$1-2$
switched GND	$2-3$

GND-PE coupling The potentials 24VGND and PE are coupled by the FST-Controller using an RC combination. The mounting hole across which both potentials are applied (internal PE, external GND, see "FST jumpers and GND-PE coupling" on page 42) are fitted with a plastic nut.

To enable bridging of the RC combination (direct connection between GND and PE) the mounting hole is fitted with a conductive metal nut.

LEDs

LED	Colou r	State	Description
RUN	green	on	The FST-Controller is switched on and working correctly.
		off	The FST-Controller has no power supply.
STATUS	green	on	The drive processor is working correctly.
		flashing	The landing control is switched off.
	off	Fault in the drive processor.	
ERROR	red	on	A drive is not possible.
		flashing	One or more errors have been added to the error list.
		off	There is no error or event.

4 Technical Data
4.2 FST-Controller

Terminals and plugs

FST: X1	Pre-selection circuit board	
1	Motor monitoring	(input)
2	Standstill monitoring	(input)
3	Brake monitoring	(input)
4	Auxiliary and ramp control "ON"	(input)
5	Auxiliary and ramp control "UP"	(input)
6	Auxiliary and ramp control "DOWN"	(input)
7	Correction switch, bottom "CB"	(input)
8	Correction switch, top "CT"	(input)
9	Zone enabling	(output)
10	Zone signal	(input)
11	Simulated encoder-B	(input)
12	Override safety monitoring device A6	(output)
13	Pre-selection relay 0	(output)
14	Pre-selection relay 1	(output)
15	Pre-selection relay 2	(output)
16	Pre-selection relay 3	(output)
17	Pre-selection relay 4	(output)
18	Pre-selection relay 5	(output)
19	Pre-selection relay 6	(output)
20	Pre-selection relay 7	(output)
21	Pre-selection relay 8	(output)
22	Pre-selection relay 9	(output)
23	Pre-selection relay 10	(output)
24	Pre-selection relay 11	(output)
25	Pre-selection relay 12	(output)
26	Opto-coupler "Emergency stop"	(input)
27	Opto-coupler "Door C"	(input)
28	Opto-coupler "Door B"	(input)
29	Opto-coupler "Door A"	(input)
30	Opto-coupler "Door lock"	(input)
31	+24V (permanent)	
32	+24V (permanent)	
33	+24V (pre-selection supply)	
34	+24V (pre-selection supply)	
35	+ $12 \ldots+24 \mathrm{~V}$ (emergency power supply unit)	
36	OV / GND	
37	OV / GND	
38	OV / GND	
39	OV / GND	
40	OV / GND	

FST: X2	Colour code	Absolute value encoder	Pin on absolute value encoder
1	PK	Data signal "A"	P2
2	YE	Clock signal "A"	P3
3	RD	Incremental encoder signal "A"	
4	WH	$+24 V$ or +5 V (JMP5)	P8
5	BN	0V / GND	P1
6	GY	Data signal "B"	P10
7	GN	Clock signal "B"	PS0
8	BU	Incremental encoder signal "B"	P5
9	Shield	PE / protective conductor	

FST: X3	Colour code	Option bus
See LON-Bus page 94.		

FST: X4	Colour code	Car bus
1	PK	Bus signal "A"
2	YE	Phone "B"
3	RD	Voice "B"
4	BN	Alarm emergency power supply unit (HSG)
5	WH	$+12 . .24 V$ DC (supply voltage of emergency power supply unit)
6	GY	Bus signal "B"
7	GN	Phone "A"
8	BU	Voice "A"
9	Shield	PE / protective conductor

FST: X5	Colour code	Shaft A bus

FST: X6	Colour code	Shaft B bus
See LON-Bus page 94.		

4 Technical Data
4.2 FST-Controller

FST: X7	Power supply / telephone / programmable inputs/outputs
1	+24V / 2A (power supply of FST)
2	0V / GND / 2A (power supply of FST)
3	+24V / 0.5A (power supply)
4	Programmable input/output 0
5	Programmable input/output 1
6	Programmable input/output 2
7	Programmable input/output 3
8	Programmable input/output 4
9	Programmable input/output 5
10	Programmable input/output 6
11	Programmable input/output 7
12	OV / GND / 0.5A (power supply for low-active inputs)
13	Input: message "Power failure" (input)
14	Input: Car Light "OFF" (input)
15	Input: Landing control "OFF" (input)
16	Input: OV / GND (for emergency power and intercom system) (input)
17	Input: +12..24V (supply for emergency power unit) (input)
18	Output: Alarm horn (output)
19	Voice "A"
20	Voice "B"
21	Phone "A"
22	Phone "B"
23	Input: +24V / 4A (shaft bus and GST supply)
24	Input: OV / GND / 4A (shaft bus and GST supply)

FST: X9	Service PC (RS-232 interface)
1	DCD Data Carrier Detected
2	RxD Receive Data
3	TxD Transmit Data
4	DTR Data Terminal Ready
5	0V / GND Ground
6	DSR Data Set Ready
7	RTS Request To Send
8	CTS Clear To Send
9	RI Ring Indicator

FST: X10	Modem (RS-232 interface)
See FST: X9	

FST: X11	Serial 1 (2-wire RS-232 interface)
1	Not assigned
2	RxD Receive Data
3	TxD Transmit Data
4	Not assigned
5	$0 \mathrm{~V} /$ GND Ground
6	Not assigned
7	Not assigned
8	Not assigned
9	Not assigned

FST: X12	Serial 2		
	RS-232	RS-422	RS-485
1	Not assigned	Not assigned	Not assigned
2	RxD	Not assigned	Not assigned
3	TxD	Not assigned	Not assigned
4	+TX	"A"	"A" bridged with 7
5	OV / GND	OV / GND	OV / GND
6	Not assigned	Not assigned	Not assigned
7	+ Rx	"A"	"A" bridged with 4
8	-Rx	"B"	"B" bridged with 9
9	-Tx	"B"	"B" bridged with 8

The software distinguishes between a RS-232 and a RS-4xx interface for connecting the position encoder. With RS-422 and RS-485 the plug wiring is different.

4.3 VSM pre-selection module

The VSM pre-selection module electrically isolates the mains voltage signals of the drive circuit and the safety circuit from the control signals of the FST-Controller. The control signals of the drive are isolated by the preselection relays. The control signals of the safety circuit are isolated by the opto-coupler.

The zero conductor of the drive contactors must be routed via the circuit board (see terminals X1.8 and X2.9 on page 52 for connecting the zero conductor).

A valid type verification certificate from the TÜV-Rheinland is available for the VSM pre-selection module.

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Safety circuit control signals	24	V DC
	Drive control signals	250	V AC
	Power consumption	50	mA
	Length \times width \times height	$120 \times 120 \times 17.5$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.4 VSM pre-selection module

Jumper J1 Jumper J1 determines whether the monitoring signals (motor, standstill, break) are low-active (0V) or high-active signals (+24V).

Function	Pin
Low-active monitoring signals	$1-2$
High-active monitoring signals	$2-3$

Jumper J1 must be plugged. The monitoring signals must not be undefined.

Jumper J2 Jumper J2 determines the source for the power supply of the pre-selection relays K0..K8.

If jumper $\mathbf{J} 2$ is not plugged the pre-selection relays K0..K10 are not powered and cannot be activated.

Source	Function	Pin
+24 V	During an emergency stop the software releases the pre-selection relays K0..K10.	$1-2$
+24 V NH	During an emergency stop relays K0...K10 are released by the hardware (24V NH).	$2-3$

LEDs

LED	Colou r	State	Description
LD1	green	on	No emergency stop
LD2	green	on	Door contact C closed
LD3	green	on	Door contact B closed
LD4	green	on	Door contact A closed
LD5	green	on	Door lock or door lock contact closed
LD6	green	on	Bypass relay K20 activated
LD7	green	on	Pre-selection relay K0 activated
LD8	green	on	Pre-selection relay K1 activated
LD9	green	on	Pre-selection relay K2 activated
LD10	green	on	Pre-selection relay K3 activated
LD11	green	on	Pre-selection relay K4 activated
LD12	green	on	Pre-selection relay K5 activated
LD13	green	on	Pre-selection relay K6 activated
LD14	green	on	Pre-selection relay K7 activated
LD15	green	on	Pre-selection relay K8 activated
LD16	green	on	Zone message (input)
LD17	green	on	Zone enabling (output)

Terminals and plugs	VSM: X1	Safety circuit poll
	1	Bypass A6 Safety Circuit (input)
2	Monitoring safety contact "Door lock"	
3	Monitoring safety contact "Door A"	
4	Monitoring safety contact "Door B"	
5	Monitoring safety contact "Door C"	
6	Monitoring safety contact "Emergency stop"	
7	Safety contact "emergency stop" of the A6 Safety Circuit	
8	Zero conductor	(input)

VSM: X2	Pre-selection "A"
1	Door lock conductor B (bridged with terminal X3.8 at zero potential)
2	Pre-selection contact 3 (potential X2.4)
3	Pre-selection contact 2 (potential X2.4)
4	Door lock conductor B (bridged with terminal X2.6 at zero potential)
5	Not assigned
6	Door lock conductor A (bridged with terminal X1.2 at zero potential)
7	Pre-selection contact 1 (safety circuit potential)
8	Pre-selection contact 0 (safety circuit potential)
9	Zero conductor (the type verification certificate requires a zero conductor of the motor contactors) (output)

VSM: X3	Pre-selection "B"
1	Pre-selection contact 8.NC (potential X3.8)
2	Pre-selection contact 8.NO (potential X3.8)
3	Pre-selection contact 7.NC (potential X3.8)
4	Pre-selection contact 7.NO (potential X3.8)
5	Pre-selection contact 6 (potential X3.8)
6	Pre-selection contact 5 (potential X3.8)
7	Pre-selection contact 4 (potential X3.8)
8	Door lock conductor C (bridged with terminal X2.1 at zero potential)

VSM: X4	24V monitoring
1	+24 V
2	OV / GND
3	Correction switch, top "CT"
4	Correction switch, bottom "CB"
5	Motor monitoring
6	Standstill monitoring
7	Brake monitoring

VSM: X5	A6 Safety Circuit
1	+24 V
2	0V / GND
3	Zone enabling (output)
4	Zone message (input)
5	Zone switch "A" (antivalent to "B")
6	Zone switch "B" (antivalent to "A")

VSM: X6	Auxiliary control
1	+24 V
2	Auxiliary control "ON"
3	Auxiliary control "UP"
4	Auxiliary control "DOWN"

VSM: X7	Falling supply voltage
1	+24 V
2	$0 \mathrm{~V} / \mathrm{GND}$
3	+24 V
4	$0 \mathrm{~V} / \mathrm{GND}$
5	+24 V
6	$0 \mathrm{~V} / \mathrm{GND}$

VSM: X8	Trailing cable
1	+24 V
2	+24 V
3	$0 \mathrm{~V} /$ GND
4	$0 \mathrm{~V} /$ GND
5	Zone switch "A" (antivalent to "B")
6	Zone switch "B" (antivalent to "A")
7	Correction switch, top "CT"
8	Correction switch, bottom "CB"

VSM: X9	FST connection
1	Motor monitoring
2	Standstill monitoring
3	Brake monitoring
4	Auxiliary control "ON"
5	Auxiliary control "UP"
6	Auxiliary control "DOWN"
7	Correction switch, bottom "CB"
8	Correction switch, top "CT"
9	Zone enabling
10	Zone signal
11	Encoder B
12	Bypass A6 Safety Circuit
13	Pre-selection contact 0
14	Pre-selection contact 1
15	Pre-selection contact 2
16	Pre-selection contact 3
17	Pre-selection contact 4

VSM: X9	FST connection
18	Pre-selection contact 5
19	Pre-selection contact 6
20	Pre-selection contact 7
21	Pre-selection contact 8
22	Not assigned
23	Not assigned
24	Not assigned
25	Not assigned
26	Safety circuit "Emergency stop"
27	Safety circuit "Door C"
28	Safety circuit "Door B"
29	Safety circuit "Door A"
30	Safety circuit "Door lock"
31	Not assigned
32	Not assigned
33	Not assigned
34	Not assigned
35	Not assigned
36	Not assigned
37	OV / GND
38	OV / GND
39	OV / GND
40	OV / GND

Terminal X9 connects the pre-selection module VSM with terminal strip X1 of the FST-Controller (see page 45). The VSM pre-selection module does not use the FST signals on pins 22 to 25 and 31 to 36 at present. Therefore the pins are shown as "not assigned" in this table.

4.4 VSE pre-selection extension

The VSE pre-selection extension is an extension module for the VSM preselection module. It provides four additional pre-selection relays K9...K12 for controlling the drive.

The VSE pre-selection extension is only used with few drive types.

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Drive control signals	250	V AC
	Power consumption	50	mA
	Length \times width \times height	$100 \times 50 \times 17.5$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.5 VSE pre-selection extension

Jumpers Jumpers $\mathrm{J} 10, \mathrm{~J} 11$ and J 12 determine the supply of relay contacts K10...K12. The supply of relay contact K9 is applied to terminal X10.1.

Jumper		Potential
J10	Pin 1-2 plugged	K10 supplied by X10.1.
	Pin 2-3 plugged	K10 supplied by X10.4.
J 11	Pin 1-2 plugged	K11 supplied by X10.1.
	Pin 2-3 plugged	K 11 supplied by X10.8.
J 12	Pin 1-2 plugged	K 12 supplied by X 10.1.
	Pin 2-3 plugged	K 12 supplied by X 10.10.

LEDs

LED	Colou \mathbf{r}	State	Description
LD9	green	on	Pre-selection relay K9 activated
LD10	green	on	Pre-selection relay K10 activated
LD11	green	on	Pre-selection relay K11 activated
LD12	green	on	Pre-selection relay K12 activated

Terminals and plugs

VSE: X9	FST connection
$1 \ldots 21$	Not assigned
22	Control pre-selection relay K9
23	Control pre-selection relay K10
24	Control pre-selection relay K11
25	Control pre-selection relay K12
$26 \ldots 30$	Not assigned
31	+24 V (permanent)
32	+24 V (permanent)
$33 \ldots 36$	Not assigned
37	$0 \mathrm{~V} / \mathrm{GND}$
38	$0 \mathrm{~V} / \mathrm{GND}$
39	$0 \mathrm{~V} / \mathrm{GND}$
40	$0 \mathrm{~V} / \mathrm{GND}$

VSE: X10	Extended pre-selection
1	Supply for relay contacts K9...K12 (see "Jumpers")
2	Opening contact K9
3	Closing contact K9
4	Supply for relay contact K10 (see "Jumpers")
5	Opening contact K10
6	Closing contact K10
7	Supply for relay contact K11 (see "Jumpers")
8	Opening contact K11
9	Closing contact K11
10	Supply for relay contact K12 (see "Jumpers")
11	Opening contact K12
12	Closing contact K12

4.5 FSM car control module

The FSM car control module is the interface between FST-Controller and all low-voltage car signals. Signal exchange between FSM and FST takes place via the LON bus. The FSM is installed either in the control box on the car roof or in the car operating panel.

After switching off the main switch parts of the car control panel are still live.

- Plug X14 (car light) is only off circuit after the car light supply has been switched off.
- Plug X3 (emergency light) is only off circuit after the trailing cable plug X1 has been unplugged.

Technical Data

Description	Value	Unit
Supply voltage	$24 \pm 10 \%$	V DC
Power consumption	300	
mA		
Outputs	Excess load and short-circuit proof	
Inputs/outputs	$200 \times 100.3 \times 34$	mm
Length \times width \times height		
Temperature range		
Storage $/$ transport Operation $-20-+70$ ${ }^{\circ} \mathrm{C}$ Relative humidity $\pm 0-+60$ ${ }^{\circ} \mathrm{C}$ $\frac{\text { Storage } / \text { transport }}{\text { Operation }}$ $5-95$ $\%$		

\qquad

Fig. 4.6 FSM car control module

Jumpers Setting doors

Setting	JT1	JT2
Door A or door A \& B	open	open
Door C	plugged	open
not applicable	open	plugged
not applicable	plugged	plugged

A separate car control module is required for door C when three car doors are installed.

Assigning the car in simplex mode

Setting	JK3	JK2	JK1
FST A	open	open	open

Assigning the car in group mode

If more than one FST-Controller is administered with a GST Group Controller the respective car is assigned to its FST-Controller with jumpers JK1, JK2 and JK4.

Setting	JK3	JK2	JK1
FST A	open	open	open
FST B	open	open	plugged
FST C	open	plugged	open
FST D	open	plugged	plugged
FST E	plugged	open	open
FST F	plugged	open	plugged
FST G	plugged	plugged	open
FST H	plugged	plugged	plugged

Car assignments of the FSM car control module and the FPM car operating panel module of a car must be identical.

Setting the emergency power supply unit (HSG)

Emergency power supply unit	J3
12 V	plugged
24 V	open

Unused jumpers

Not plugged:

- J2 (service jumper)
- J1 (no function at present)

LEDs	LED	Colou r	State	Description
	LD1	green	on	Door " A " is closing
	LD2	green	on	Door " A " is opening
	LD3	green	on	Door " B " is closing
	LD4	green	on	Door " B " is opening
	LD5	green	on	Supply voltage present
	LD6	yellow	flashing briefly	FSM ready
			flashing or permanent ly on	Hardware error
	LD7	red	on	Car light off (see "FSM: X14" and "CAR LIGHT FAILURE" on page 157)

Terminals and plugs

FSM: X1	Trailing cable
1	Bus signal "A"
2	Phone "B"
3	Voice "B"
4	Alarm emergency power supply unit (HSG)
5	$12 . .24 \mathrm{~V}$ DC (supply voltage of emergency power supply unit)
6	Bus signal "B"
7	Phone "A"
8	Voice "A"
9	PE / protective conductor

FSM: X2	Colour code	LON bus
See LON-Bus page 93.		

FSM: X3	Intercom / telephone (optional)
1	Phone "A"
2	Phone "B"
3	Voice "A"
4	Voice "B"
5	$8 . .24 \mathrm{~V}$ DC (supply voltage of intercom)
6	Emergency light
7	$0 \mathrm{~V} /$ GND
8	Alarm button
9	Alarm test

FSM: X4	Supply voltage
1	+24 V
2	$0 \mathrm{~V} / \mathrm{GND}$
3	+24 V
4	$0 \mathrm{~V} / \mathrm{GND}$
5	+24 V
6	$0 \mathrm{~V} / \mathrm{GND}$

FSM: X5	Zone and correction switches
1	Zone switch "A" (antivalent to "B")
2	$0 \mathrm{~V} / \mathrm{GND}$
3	Zone switch "B" (antivalent to "A")
4	$0 \mathrm{~V} /$ GND
5	Correction switch, top "CT"
6	$0 \mathrm{~V} /$ GND
7	Correction switch, bottom "CB"
8	$0 \mathrm{~V} /$ GND

FSM: X6	Car light / ventilator / approach chime
1	Approach chime (negative trigger)
2	+24 V
3	Relay for car light
4	Relay for car ventilator
5	Relay for cam "A"
6	Relay for cam "B"
7	Relay for cam "C"

FSM: X7	Controller door "A"
1	Controller door "A" / common contact / COM
2	Controller door "A" open <>
3	Controller door "A" close $><$

FSM: X8	Controller door "A"
1	+24 V
2	Enable "Open Door A" / limit switch "Door A OPEN"
3	+24 V
4	Enable "Close Door A" / limit switch "Door A CLOSE"
5	+24 V
6	Reversing contact door "A"
7	+24 V
8	Photocell contact door "A"
9	OV / GND

When using doors without limit switches terminal X8.1 must be bridged with X8.2 and terminal X8.3 with X8.4.

FSM: X9	Controller door "B"
1	+24 V
2	Enable "Open Door B" / limit switch "Door B OPEN"
3	+24 V
4	Enable "Close Door B" / limit switch "Door B CLOSE"
5	+24 V
6	Reversing contact door "B"
7	+24 V
8	Photocell contact door "B"
9	$0 \mathrm{~V} / \mathrm{GND}$

When using doors without limit switches terminal X9.1 must be bridged with X9.2 and terminal X9.3 with X9.4.

FSM: X10	Controller door "B"
1	Controller door "B" / common contact / COM
2	Controller door "A" open <>
3	Controller door "A" close ><

FSM: X11	Sensor (load / car light)
1	Overload contact
2	OV / GND
3	Full load contact
4	OV / GND
5	Car empty
6	0V / GND
7	Pre-assembled current sensor for car light
8	OV / GND

FSM: X12	\quad Inspection control
1	+24 V
2	Inspection ON
3	Inspection UP
4	Inspection DOWN
5	Inspection FAST

FSM: X13	Trailing cable
1	+24 V
2	+24 V
3	$0 \mathrm{~V} / \mathrm{GND}$
4	$0 \mathrm{~V} / \mathrm{GND}$
5	Zone switch "A" (antivalent to "B")
6	Zone switch "B" (antivalent to "A")
7	Correction switch, top "CT"
8	Correction switch, bottom "CB"

FSM: X14	Car light sensor
1	230V AC supply cable for car light (from relay K301)
2	230V AC supply cable for car light (to terminal L4C)

The power consumption of the car light is measured with coil L1. This allows monitoring of the car light function (see description of control). LED LD7 shows the state of the car light (see "CAR LIGHT FAILURE" on page 157).

4.6 FPM car operating panel module

The FPM car operating panel module is the interface between in-car control panel and FST-Controller. One FPM supports up to 16 in-car call buttons. The FPM is connected to the FST via the LON bus. The FPM is installed either in the control box on the car roof or in the car operating panel.

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Power consumption	50	mA
	Max. switch-on current per output for approx. 40 ms	600	mA
	Outputs	Excess load and short-circuit proof	
	Inputs/outputs	Low-active	
	Length \times width \times height	$120 \times 71 \times 20$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.7 FPM car operating panel module

Jumpers Setting lift car doors

In "single door mode" the in-car buttons of the car operating panel module are assigned using the jumpers on one door side (A, B or C). If jumper J2 is plugged the FPM is in "dual door mode", this means that the FPM can process the in-car calls of door sides A and B.

A separate FPM is required for door C when three car doors are installed.

Setting	Mode	JT1	JT2	J2
Door A	single door mode	open	open	open
Door B	single door mode	plugged	open	open
Door C	single door mode	open	plugged	open
Door A+B	dual door mode	open	open	plugged
Door A+B (Fireman input X4.4 and loading button X4.34 act on door B.)	dual door mode	open	plugged	plugged
Door B+A (Calls A and B switched.)	dual door mode	plugged	open	plugged

Assigning the car in simplex mode

Setting	JK4	JK2	JK1
FST A	open	open	open

Assigning the car in group mode

If more than one FST-Controller is administered with a GST Group Controller the respective car is assigned to its FST-Controller with jumpers JK1, JK2 and JK4.

Setting	JK4	JK2	JK1
FST A	open	open	open
FST B	open	open	plugged
FST C	open	plugged	open
FST D	open	plugged	plugged
FST E	plugged	open	open
FST F	plugged	open	plugged
FST G	plugged	plugged	open
FST H	plugged	plugged	plugged

Car assignments of the FSM car control module and the FPM car operating panel module of a car must be identical.

Unused jumpers

Not plugged:

- J1 (service jumper)

LEDs \begin{tabular}{|c|c|c|l|}

\hline LED \& | Colou |
| :---: |
| \mathbf{r} | \& State \& \multicolumn{1}{|c|}{ Description }

\hline LD1 \& yellow \& | flashing |
| :---: |
| briefly | \& FPM ready

\cline { 3 - 4 } | flashing or |
| :---: |
| permanent |
| ly on | \& Hardware error

\hline LD2 \& green \& on \& Supply voltage (+5V) present

\hline
\end{tabular}

FPM: X1	Colour code	LON bus
See LON-Bus page 93.		

FPM: X2	Colour code	LON bus
See LON-Bus page 93.		

FPM: X3	Car call button extension
1	+24 V (supply voltage)
2	+24 V (supply voltage)
3	+5 V (supply voltage)
4	+5 V (supply voltage)
5	Reset SPI driver
6	$0 \mathrm{~V} / \mathrm{GND}$
7	Serial clock
8	OV / GND
9	Serial output
10	OV / GND
11	Serial input
12	0V / GND
13	SPI select 3 (IDR 48..63)
14	0V / GND
15	SPI select 2 (IDR 32.0.47)
16	OV / GND
17	SPI select 1 (IDR 16.0.31)
18	OV / GND
19	FPE recognition
20	OV / GND

The colour code in the following table corresponds to the 50-pin standard cable for wiring the in-car control panel. Individual systems can use different colour codes.

FPM: X4	Colour code	In-car control panel signals in "single door mode"	Input/ output
1	WH	Button "Ventilator ON"	E
2	BR	Button "Close Door B"	E
3	GN	Button "Close Door A"	E
4	YE	Key switch for Fireman Mode	E
5	GY	Display-2	A
6	PK	Overload indicator	A

$\begin{aligned} & \text { FPM: } \\ & \text { X4 } \end{aligned}$	Colour code	In-car control panel signals in "single door mode"	Input/ output
7	BU	Direction display "UP"	A
8	RD	+24V	A
9	BL	Floor display 6	A
10	VT	Floor display 3	A
11	GY PK	Floor display 0 (LSB)	A
12	RD BU	In-car button 15	I/O
13	WH GN	In-car button 12	I/O
14	BR GN	In-car button 09	I/O
15	WH YE	In-car button 06	I/O
16	YE BR	In-car button 03	I/O
17	WH GY	In-car button 00	I/O
18	GY BR	OV / GND	A
19	WH PK	OV / GND	A
20	PK BR	OV / GND	A
21	WH BU	OV / GND	A
22	BR BU	+24V	A
23	WH RD	+24V	A
24	BR RD	+24V	A
25	WH BL	Floor display 7 (MSB)	A
26	BR BL	Floor display 4	A
27	GY GN	Floor display 1	A
28	YE GY	In-car button enable	A
29	RD GN	In-car button 13	I/O
30	YE PK	In-car button 10	I/O
31	GN BU	In-car button 07	I/O
32	YE BU	In-car button 04	I/O
33	GN RD	In-car button 01	1/O
34	YE RD	Landing control OFF or button „Ioading function" (see "Pin-34 Functn" on page 123)	E
35	GN BL	Button "Open Door B" or "divider door" (see "Divider-Door" on page 123)	E
36	YE BL	Button "Open Door A"	E
37	GY BU	Key switch for priority car	E
38	RD BU	Display-1	A
39	GY RD	Display-0	A
40	PK RD	Direction display "DOWN"	A
41	GY BL	OV / GND	A
42	PK BL	Floor display 5	A
43	BU BL	Floor display 2	A
44	RD BL	Secondary in-car call button enable (only active with a card reader in the car)	A
45	WH BR BL	In-car button 14	I/O
46	YE GN BL	In-car button 11	I/O

FPM: X4	Colour code	In-car control panel signals in "single door mode"	Input/ output
47	PK GR BL	In-car button 08	I/O
48	BL BU RD	In-car button 05	I/O
49	WH GN BL	In-car button 02	I/O
50	GN BR BL	+24 V	A

$\begin{aligned} & \text { FPM: } \\ & \text { X4 } \end{aligned}$	Colour code	In-car control panel signals in "dual door mode"	Input/ output
1	WH	Button "Ventilator ON"	E
2	BR	Button "Close Door B"	E
3	GN	Button "Close Door A"	E
4	YE	Key switch for Fireman Mode	E
5	GY	Display-2	A
6	PK	Overload indicator	A
7	BU	Direction display "UP"	A
8	RD	+24V	A
9	BL	Floor display 6	A
10	VT	Floor display 3	A
11	GY PK	Floor display 0 (LSB)	A
12	RD BU	In-car button 07, door side B	I/O
13	WH GN	In-car button 04, door side B	I/O
14	BR GN	In-car button 01, door side B	I/O
15	WH YE	In-car button 06, door side B	I/O
16	YE BR	In-car button 03, door side B	I/O
17	WH GY	In-car button 00, door side B	I/O
18	GY BR	OV / GND	A
19	WH PK	OV / GND	A
20	PK BR	OV/ GND	A
21	WH BU	OV/GND	A
22	BR BU	+24V	A
23	WH RD	+24V	A
24	BR RD	+24V	A
25	WH BL	Floor display 7 (MSB)	A
26	BR BL	Floor display 4	A
27	GY GN	Floor display 1	A
28	YE GY	In-car button enable	A
29	RD GN	In-car button 05, door side B	I/O
30	YE PK	In-car button 02, door side B	I/O
31	GN BU	In-car button 07, door side A	I/O
32	YE BU	In-car button 04, door side A	I/O
33	GN RD	In-car button 01, door side A	I/O
34	YE RD	Landing control OFF or button „loading function" (see "Pin-34 Functn" on page 123)	E

FPM: X4	Colour code	In-car control panel signals in "dual door mode"	Input/ output
35	GN BL	Button "Open Door B" or "divider door" (see "Divider-Door" on page 123)	E
36	YE BL	Button "Open Door A"	E
37	GY BU	Key switch for priority car	E
38	RD BU	Display-1	A
39	GY RD	Display-0	A
40	PK RD	Direction display "DOWN"	A
41	GY BL	OV / GND	A
42	PK BL	Floor display 5	A
43	BU BL	Floor display 2	A
44	RD BL	Secondary in-car call button enable (only active with a card reader in the car)	A
45	WH BR BL	In-car button 06, door side B	I / O
46	YE GN BL	In-car button 03, door side B	I/O
47	PK GR BL	In-car button 00, door side B	I/O
48	BL BU RD	In-car button 05, door side A	I/O
49	WH GN BL	In-car button 02, door side A	I/O
50	GN BR BL	+24V	A

4.7 FPE car control panel extension module

The FPE car control panel extension module extends the 16 in-car commands of the car control panel module by:

- 16 in-car commands (FPE16)
- 32 in-car commands (FPE32)
- 48 in-car commands (FPE48)

The FPE is connected to the FPM via plug X3.
Switching from "single door mode" to "dual door mode" is done with jumper J2 of the assigned FPM (see "Jumpers" on page 66).

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Power consumption	10	mA
	Max. switch-on current per output for approx. 40 ms	600	mA
	Outputs	Excess load and short-circuit proof	
	Inputs/outputs	Low-active	
	Length \times width \times height	$98.5 \times 71 \times 20$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.8 FPE car control panel extension module

The colour code in the following table corresponds to the 50-pin standard cable for wiring the in-car control panel. Individual systems can use different colour codes.

Terminals and plugs

FPE: X2	Colour code	In-car control panel signals in "single door mode""	Input/ output
1	WH	Output: +24V	A
2	BR	In-car button 61	I/O
3	GN	In-car button 58	I/O
4	YE	In-car button 55	I/O
5	GY	In-car button 52	I/O
6	PK	In-car button 49	I/O
7	BU	In-car button 46	I/O
8	RD	In-car button 43	I/O
9	BL	In-car button 40	I/O
10	VT	In-car button 37	I/O
11	GY PK	In-car button 34	I/O
12	RD BU	In-car button 31	I/O
13	WH GN	In-car button 28	I/O
14	BR GN	In-car button 25	I/O

$\begin{aligned} & \text { FPE: } \\ & \text { X2 } \end{aligned}$	Colour code	In-car control panel signals in "single door mode"	Input/ output
15	WH YE	In-car button 22	I/O
16	YE BR	In-car button 19	I/O
17	WH GY	In-car button 16	I/O
18	GY BR	In-car button 62	I/O
19	WH PK	In-car button 59	I/O
20	PK BR	In-car button 56	I/O
21	WH BU	In-car button 53	I/O
22	BR BU	In-car button 50	I/O
23	WH RD	In-car button 47	I/O
24	BR RD	In-car button 44	I/O
25	WH BL	In-car button 41	I/O
26	BR BL	In-car button 38	I/O
27	GY GN	In-car button 35	I/O
28	YE GY	In-car button 32	I/O
29	RD GN	In-car button 29	I/O
30	YE PK	In-car button 26	I/O
31	GN BU	In-car button 23	I/O
32	YE BU	In-car button 20	I/O
33	GN RD	In-car button 17	I/O
34	YE RD	In-car button 63	I/O
35	GN BL	In-car button 60	I/O
36	YE BL	In-car button 57	I/O
37	GY BU	In-car button 54	I/O
38	RD BU	In-car button 51	I/O
39	GY RD	In-car button 48	I/O
40	PK RD	In-car button 45	I/O
41	GY BL	In-car button 42	I/O
42	PK BL	In-car button 39	I/O
43	BU BL	In-car button 36	I/O
44	RD BL	In-car button 33	I/O
45	WH BR BL	In-car button 30	I/O
46	YE GN BL	In-car button 27	I/O
47	PK GR BL	In-car button 24	I/O
48	BL BU RD	In-car button 21	I/O
49	WH GN BL	In-car button 18	I/O
50	GN BR BL	Output: +24V	A

$\begin{aligned} & \text { FPE: } \\ & \text { X2 } \end{aligned}$	Colour code	In-car button panel in "dual door mode"	Input/ output
1	WH	Output: +24V	A
2	BR	In-car button 29, door side B	I/O
3	GN	In-car button 26, door side B	I/O
4	YE	In-car button 31, door side A	I/O
5	GY	In-car button 28, door side A	I/O
6	PK	In-car button 25, door side A	I/O
7	BU	In-car button 22, door side B	I/O
8	RD	In-car button 19, door side B	I/O
9	BL	In-car button 16, door side B	I/O
10	VT	In-car button 21, door side A	I/O
11	GY PK	In-car button 18, door side A	I/O
12	RD BU	In-car button 15, door side B	I/O
13	WH GN	In-car button 12, door side B	I/O
14	BR GN	In-car button 09, door side B	I/O
15	WH YE	In-car button 14, door side A	I/O
16	YE BR	In-car button 11, door side A	I/O
17	WH GY	In-car button 08, door side A	I/O
18	GY BR	In-car button 30, door side B	I/O
19	WH PK	In-car button 27, door side B	I/O
20	PK BR	In-car button 24, door side B	I/O
21	WH BU	In-car button 29, door side A	I/O
22	BR BU	In-car button 26, door side A	I/O
23	WH RD	In-car button 23, door side B	I/O
24	BR RD	In-car button 20, door side B	I/O
25	WH BL	In-car button 17, door side B	I/O
26	BR BL	In-car button 22, door side A	I/O
27	GY GN	In-car button 19, door side A	I/O
28	YE GY	In-car button 16, door side A	I/O
29	RD GN	In-car button 13, door side B	I/O
30	YE PK	In-car button 10, door side B	I/O
31	GN BU	In-car button 15, door side A	I/O
32	YE BU	In-car button 12, door side A	I/O
33	GN RD	In-car button 09, door side A	I/O
34	YE RD	In-car button 31, door side B	I/O
35	GN BL	In-car button 28, door side B	I/O
36	YE BL	In-car button 25, door side B	I/O
37	GY BU	In-car button 30, door side A	I/O
38	RD BU	In-car button 27, door side A	I/O
39	GY RD	In-car button 24, door side A	I/O
40	PK RD	In-car button 21, door side B	I/O
41	GY BL	In-car button 18, door side B	I/O
42	PK BL	In-car button 23, door side A	I/O
43	BU BL	In-car button 20, door side A	I/O
44	RD BL	In-car button 17, door side A	I/O

FPE: X2	Colour code	In-car button panel in "dual door mode"	Input/ output
45	WH BR BL	In-car button 14, door side B	I/O
46	YE GN BL	In-car button 11, door side B	I/O
47	PK GR BL	In-car button 08, door side B	I/O
48	BL BU RD	In-car button 13, door side A	I/O
49	WH GN BL	In-car button 10, door side A	I/O
50	GN BR BL	Output: +24V	A

FPE: X3	Colour code	car call button extension
See FPM: X3 page 69		

4.8 FPA car control panel adapter

The FPA car control panel adapter provides spring terminals for all in-car panel signals of FPM plug X4. It replaces the round 50-pin cable for wiring the in-car control panel.

The FPA is connected to plug X4 of the in-car control panel with the 50-pin plug X4.

Switching from "single door mode" to "dual door mode" is done with jumper J2 of the assigned FPM (see "Jumpers" on page 66).

Technical Data See FPM

Fig. 4.9 FPA car control panel adapter

Terminals and plugs

FPA: X4	Function
See FPM: X4 page 69	

$\begin{aligned} & \text { FPA: } \\ & \text { X5 } \end{aligned}$	In-car control panel signals	Input/ output
1	In-car button 00 (00 door side A in dual door mode)	I/O
2	In-car button 01 (01 door side A in dual door mode)	I/O
3	In-car button 02 (02 door side A in dual door mode)	I/O
4	In-car button 03 (03 door side A in dual door mode)	I/O
5	In-car button 04 (04 door side A in dual door mode)	I/O
6	In-car button 05 (05 door side A in dual door mode)	I/O
7	In-car button 06 (06 door side A in dual door mode)	I/O
8	In-car button 07 (07 door side A in dual door mode)	I/O
9	In-car button 08 (00 door side B in dual door mode)	I/O
10	In-car button 09 (01 door side B in dual door mode)	I/O
11	In-car button 10 (02 door side B in dual door mode)	I/O
12	In-car button 11 (03 door side B in dual door mode)	I/O
13	In-car button 12 (04 door side B in dual door mode)	I/O
14	In-car button 13 (05 door side B in dual door mode)	I/O
15	In-car button 14 (06 door side B in dual door mode)	I/O
16	In-car button 15 (07 door side B in dual door mode)	I/O
17	Secondary in-car call button enable (only active with a card reader in the car)	A
18	GND	A
19	Floor display 0 (LSB)	A
20	Floor display 1	A
21	Floor display 2	A
22	Floor display 3	A
23	Floor display 4	A
24	Floor display 5	A
25	Floor display 6	A
26	Floor display 7 (MSB)	A
27	+24V	A

FPA: X6	In-car control panel signals	Input/ output
1	In-car button enable call 00	A
2	In-car button enable call 01	A
3	In-car button enable call 02	A
4	In-car button enable call 03	A
5	In-car button enable call 04	A
6	In-car button enable call 05	A
7	In-car button enable call 06	A

FPA: X6	In-car control panel signals	Input/ output
8	In-car button enable call 07	A
9	In-car button enable call 08	A
10	In-car button enable call 09	A
11	In-car button enable call 10	A
12	In-car button enable call 11	A
13	In-car button enable call 12	A
14	In-car button enable call 13	A
15	In-car button enable call 14	A
16	In-car button enable call 15	A
17	GND	A
18	GND	A
19	GND	A
20	GND	A
21	GND	A
22	GND	A
23	GND	A
24	GND	A
25	+24 V	A
26	$+24 V$	A
27	$+24 V$	A
28	$+24 V$	A
29	$+24 V$	A
30	$+24 V$	A

FPA: X7	In-car control panel signals	Input/ output
1	+24 V call acknowledge 00	A
2	+24 V call acknowledge 01	A
3	+24 V call acknowledge 02	A
4	+24 V call acknowledge 03	A
5	+24 V call acknowledge 04	A
6	+24 V call acknowledge 05	A
7	+24 V call acknowledge 06	A
8	+24 V call acknowledge 07	A
9	+24 V call acknowledge 08	A
10	+24 V call acknowledge 09	A
11	+24 V call acknowledge 10	A
12	+24 V call acknowledge 11	A
13	+24 V call acknowledge 12	A
14	+24 V call acknowledge 13	A
15	+24 V call acknowledge 14	A
16	+24 V call acknowledge 15	A

FPA: X7	In-car control panel signals	Input/ output
17	Button "Open Door B" or "divider door" (see "Divider- Door" on page 123)	E
18	Button "Close Door B"	E
19	Button "Open Door A"	E
20	Button "Close Door A"	E
21	Landing control OFF or button "Ioading function" (see "Pin-34 Functn" on page 123)	E
22	Button "Ventilator ON/OFF"	E
23	Key switch for Fireman Mode	E
24	Key switch for priority car	E
25	Direction display "UP"	A
26	Direction display "DOWN"	A
27	Overload indicator	A
28	Display-0	A
29	Display-1	A
30	Display-2	A

4.9 ADM landing button module

The ADM landing button module forms the interface between landing button panel and FST-Controller. The ADM is connected to the FST via the LON bus.

The ADM is delivered either pre-wired and installed in the landing panel or as a separate component (for installation in the shaft).

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Power consumption	50	mA
	Max. switch-on current per output for approx. 40 ms	600	mA
	Outputs	Excess load and short-circuit proof	
	Inputs/outputs		
	Length \times width \times height	$54 \times 50 \times 17.5$	mm
	Temperature range		
	Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.10 Landing button module ADM

Jumper Unused jumpers

- J1 (service jumper)

LED	Colou \mathbf{r}	State	Description
LD1	yellow	flashing briefly	ADM ready
		flashing or permanent ly on	Hardware error

Terminals and plugs

ADM: X1	Colour code	LON bus
See LON-Bus page 93.		

ADM: X2	Colour code	LON bus
See LON-Bus page 93.		

The landing button module is available with three different software versions:

- ADM-S ("Single") for single lifts
- ADM-D ("Double") for grouped lifts
- ADM-E ("EAZ") for position indicators

Terminals $1 . .20$ of terminal strip X3 are assigned differently depending on the software version.

ADM-X3	Function ADM-S	Function ADM-D	Function ADM-E
1	+24V	+24V	+24V
2	Landing call UP	Landing call UP	
3	Landing call DOWN	Landing call DOWN	
4	Landing call enable	Landing call enable	Chime trigger
5	+24V	+24V	+24V
6	Occupied or out of order indicator	Occupied or out of order indicator (left lift)	Occupied or out of order indicator
7	- Display "Special Drive" - Chime trigger	- Display "Special Drive" - Chime trigger (left lift) - Special Display 0 ("custom 0"	Floor display 5
8	Direction UP	Direction UP (left lift)	Direction UP
9	Direction DOWN	Direction DOWN (left lift)	Direction DOWN
10	GND	GND	GND
11	GND	GND	GND
12	Key switch 1	Key switch 1	
13	Key switch 2	Key switch 2	
14	- Special Display 0 ("custom 0" - Floor display 4		Floor display 4
15	+24V	+24V	+24V
16	Floor display 0	Direction DOWN (right lift)	Floor display 0
17	Floor display 1	Direction UP (right lift)	Floor display 1
18	Floor display 3	Occupied or out of order indicator (right lift)	Floor display 3
19	Floor display 2	Chime trigger (right lift)	Floor display 2
20	GND	GND	GND

The values in the table are the factory default settings. The functions of individual systems can differ from those in the table. Please see the system specific wiring diagrams.

Terminals for which more than one function is listed can be set to one of these functions in the factory. The function "Direction" can be configured as output for the direction of travel or as departure direction output in the FST Menu.
The terminals labelled key switch 1 and 2 can be set to fire signal, smoke detector, remote shutdown and priority landing.

4.10 RIO-ADM remote I/O module

The RIO-ADM remote I/O module provides 12 programmable inputs/ outputs at any position of the LON bus. The RIO-ADM is connected to the FST via the LON bus.

One controller can be equipped with up to six RIO-ADMs at different locations.

Number	Description	Ports
1	RIO-ADM 8 .. 19	Port[8] .. Port[19]
2	RIO-ADM 20 .. 31	Port[20] .. Port[31]
3	RIO-ADM 32 .. 43	Port[32] .. Port[43]
4	RIO-ADM 44 .. 55	Port[44] .. Port[55]
5	RIO-ADM 56 .. 67	Port[56] .. Port[67]
6	RIO-ADM 68 .. 79	Port[68] .. Port[79]

Technical Data

Description	Value	Unit
Supply voltage	$24 \pm 10 \%$	V DC
Power consumption	50	mA
Max. switch-on current per output for approx. 40 ms	600	mA
Outputs	Excess load and short-circuit proof	
Inputs/outputs	Low-active	
Length \times width \times height	$54 \times 50 \times 17.5$	mm
Temperature range $\frac{\text { Storage } / \text { transport }}{\text { Operation }}$ Relative humidity Storage $/$ transport Operation		

Fig. 4.11 RIO-ADM remote I/O module

Jumper Unused jumpers

- J1 (service jumper)

LED	Colou \mathbf{r}	State	Description
LD1	yellow	flashing briefly	RIO-ADM ready
		flashing or permanent ly on	Hardware error

Terminals and plugs

RIO-ADM: X1	Colour code	LON bus
See LON-Bus page 93.		

RIO-ADM: X2	Colour code	LON bus
See LON-Bus page 93.		

$\begin{gathered} \text { RIO-ADM- } \\ \text { X3 } \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 8 . .19 \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 20 \text {.. } 31 \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 32 \text {.. } 43 \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 44 . .55 \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 56 \text {.. } 67 \end{gathered}$	$\begin{gathered} \text { RIO-ADM } \\ 68 \text {.. } 79 \end{gathered}$
1	+24V	+24V	+24V	+24V	+24V	+24V
2	Port[8]	Port[20]	Port[32]	Port[44]	Port[56]	Port[68]
3	Port[9]	Port[21]	Port[33]	Port[45]	Port[57]	Port[69]
4	Port[12]	Port[24]	Port[36]	Port[48]	Port[60]	Port[72]
5	+24V	+24V	+24V	+24V	+24V	+24V
6	Port[13]	Port[25]	Port[37]	Port[49]	Port[61]	Port[73]
7	Port[19]	Port[31]	Port[43]	Port[55]	Port[67]	Port[79]
8	Port[11]	Port[23]	Port[35]	Port[47]	Port[59]	Port[71]
9	Port[10]	Port[22]	Port[34]	Port[46]	Port[58]	Port[70]
10	GND	GND	GND	GND	GND	GND
11	GND	GND	GND	GND	GND	GND
12						
13						
14	Port[18]	Port[30]	Port[42]	Port[54]	Port[66]	Port[78]
15	+ 24V					
16	Port[14]	Port[26]	Port[38]	Port[50]	Port[62]	Port[74]
17	Port[15]	Port[27]	Port[39]	Port[51]	Port[63]	Port[75]
18	Port[17]	Port[29]	Port[41]	Port[53]	Port[65]	Port[77]
19	Port[16]	Port[28]	Port[40]	Port[52]	Port[64]	Port[76]
20	GND	GND	GND	GND	GND	GND

4.11 RIO-FPM remote I/O module

The RIO-FPM remote I/O module provides 40 programmable inputs/ outputs at any position of the LON bus. The RIO-FPM is connected to the FST via the LON bus.

One controller can only be equipped with one RIO-FPM.

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Power consumption	10	mA
	Max. switch-on current per output for approx. 40 ms	600	mA
	Outputs	Excess load and short-circuit proof	
	Inputs/outputs	Low-active	
	Length \times width \times height	$98.5 \times 71 \times 20$	mm
	Temperature range		
	Storage / transport	-20-+70	${ }^{\circ} \mathrm{C}$
	Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
	Relative humidity		
	Storage / transport	5-95	\%
	Operation	15-85	\%

Fig. 4.12 RIO-FPM remote I/O module

Jumper Unused jumpers

- J1 (service jumper)

All other jumpers of the RIO-FPM are currently not assigned.

LED

LED	Colou \mathbf{r}	State	Description
LD1	yellow	flashing briefly	RIO-FPM ready
	flashing or permanent ly on	Hardware error	

Terminals and plugs

RIO-FPM: X1	Colour code	LON bus
See LON-Bus page 93.		

RIO-FPM: X2	Colour code	LON bus
See LON-Bus page 93.		

The colour code in the following table corresponds to the 50-pin standard cable for wiring the in-car control panel. Individual systems can use different colour codes.

RIO-FPM: X4	Colour code	Function
1	WH	Port[13]
2	BR	Port[15]
3	GN	Port[9]
4	YE	Port[11]
5	GY	Port[45]
6	PK	Port[42]
7	BU	Port[44]
8	RD	+ 24V
9	BL	Port[38]
10	VT	Port[35]
11	GY PK	Port[32]
12	RD BU	Port[31]
13	WH GN	Port[28]
14	BR GN	Port[25]
15	WH YE	Port[22]
16	YE BR	Port[19]
17	WH GY	Port[16]
18	GY BR	OV / GND
19	WH PK	OV / GND
20	PK BR	OV / GND
21	WH BU	OV / GND
22	BR BU	$+24 \mathrm{~V}$
23	WH RD	+ 24 V
24	BR RD	+ 24 V
25	WH BL	Port[39]
26	BR BL	Port[36]
27	GY GN	Port[33]
28	YE GY	Port[40]
29	RD GN	Port[29]

RIO-FPM: X4	Colour code	Function
30	YE PK	Port[26]
31	GN BU	Port[23]
32	YE BU	Port[20]
33	GN RD	Port[17]
34	YE RD	Port[12]
35	GN BL	Port[14]
36	YE BL	Port[8]
37	GY BU	Port[10]
38	RD BU	Port[46]
39	GY RD	Port[47]
40	PK RD	Port[43]
41	GY BL	OV / GND
42	PK BL	Port[37]
43	BU BL	Port[34]
44	RD BL	Port[41]
45	WH BR BL	Port[30]
46	YE GN BL	Port[27]
47	PK GR BL	Port[24]
48	BL BU RD	Port[21]
49	WH GN BL	Port[18]
50	GN BR BL	$+24 V$

4.12 LON bus

The FST-Controller is connected to the FST components via the LON bus. The number of LON bus cables depends on the number of electronics modules.

All bus inputs and outputs not in use must be equipped with a terminal resistance (terminator).

All bus cables of the FST-Controller must be installed with sufficient strain relief.

Bus cables must only be connected or disconnected when they are not live!

Technical Data	Description	Value	Unit
	Supply voltage	$24 \pm 10 \%$	V DC
	Temperature range		$-20-+70$
Storage / transport	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$	
Operation	C		
	Relative humidity	$5-95$	$\%$
Storage / transport	$15-85$	$\%$	
	Operation	0,072	$\mathrm{~kg} / \mathrm{m}$
	Weight	1000	m

Fig. 4.13 LON bus components

Colour code heat-shrinkable

 sleeve| Colour | Length of bus cable |
| :---: | :--- |
| BL | 0.5 m |
| RD | 1.0 m |
| WH | 3.0 m |
| YE | 5.0 m |
| BU | 7.0 m |
| GN | 10.0 m |
| BL | 15.0 m |
| RD | 20.0 m |

Plugs	Colour code	LON bus plugs
1	BL	Bus signal "A"
2	WH	Bus signal "B"
3	RD	$+24 \mathrm{~V} / 4 \mathrm{~A}$
4	VT	$0 \mathrm{~V} / \mathrm{GND}$

4.13 Trailing cable

The FST-Controller is connected to the electronics modules of the car via the trailing cable. The trailing cable also powers to the car components and transmits safety relevant signals.

Plugs of the trailing cable must only be connected or disconnected when they are not live!

The trailing cable is available in two versions.

Version 1:

- Halogen free sheath
- With wires for absolute value encoder signals (X3), absolute value encoder installed on car roof.

Version 2:

- Standard sheath
- No wires for absolute value encoder signals, absolute value encoder installed in shaft.

Technical Data

Description	Value	Unit
Supply voltage	$24 \pm 10 \%$	V DC
	$230 \pm 10 \%$	V AC
Temperature range		
Storage / transport	$-20-+70$	${ }^{\circ} \mathrm{C}$
Operation	$\pm 0-+60$	${ }^{\circ} \mathrm{C}$
Relative humidity		
Storage / transport	5-95	\%
Operation	15-85	\%
Weight	Version 1: 0,8 Version 2: 0,7	kg/m
Max. free suspension height	Version 1: 110 Version 2:	m
Min. bending radius (movable)	0.5	m

Fig. 4.14 Trailing cable version 1

Fig. 4.15 Trailing cable version 2

Terminals and plugs

FST: X4 / FSM: X1 Car bus
See "FST: X 4 " on page 46 or "FSM: X 1 " on page 61 .

VSM: X8 / FSM: X13	Trailing cable
See "VSM: X8" on page 53 or "FSM: X13" on page 64.	

See "FST: X2" on page 46 (only available with version 1).

X102	Terminal	Safety circuit car (controller side)
1	41	Input SCCT car
2	43	Input SCCT remote control unit
3	55	Output SCCT car in normal mode
4	51	Output SCCT car in inspection mode UP
5	45	Input SCCT car door B
6	47	Input SCCT car door A
7	49	Output SCCT car door A
8	53	Output SCCT car in inspection mode DOWN

SCCT stands for "Safety Circuit"

X202	Terminal	Safety circuit car (car side)
1	42	Input SCCT car
2	44	Input SCCT remote control unit
3	56	Output SCCT car in normal mode
4	52	Output SCCT car in inspection mode UP
5	46	Input SCCT car door B
6	48	Input SCCT car door A
7	50	Output SCCT car door A
8	54	Output SCCT car in inspection mode DOWN

SCCT stands for "Safety Circuit"

X101	Terminal	Car power supply (controller side)
1	PE	Ground car
2	L4A	230V AC car light
3	N2	Zero conductor car light
4	87	Switch signal for shaft light
5	L3	Three-phase supply car L3
6	L2 /	Three-phase supply car L2 / 230V for car door drive
7	L9A	Three-phase supply car L1
8	N / L9A	Zero conductor car door drive / 230V for car door drive

X201	Terminal	Car power supply (car side)
1	PE	Ground car
2	L4B	230V AC car light
3	N2B	Zero conductor car light
4	87	Switch signal for shaft light
5	L3	Three-phase supply car L3
6	L2 /	Three-phase supply car L2 / 230V for car door drive
7	L9B	Three-phase supply car L1
8	N/	Zero conductor car door drive / 230V for car door drive

The signals of plugs X100/101/102 and X200/201/202 can differ from those in the table. Please see the system specific wiring diagrams.

1 Menu tree

1.1 General

FST software parameters are set using the FST user interface or the HHT handheld terminal together with the FST Menu. The FST Menu is displayed as a menu tree divided into submenus and menu items.

Security levels NEW LIFT has divided the menu items in three security levels.

Level	Access	Activity
high	unlimited	Commissioning
medium	limited	Customer service
low	menus not editable	Maintenance

Setting passwords Each security level can be protected with a four digit password. With the password for the high security level the menu items of the lower levels can be accessed as well. The test menu can be accessed at any time.

The default setting for the password is "BEDE".

Menu tree All functions and settings of the menu tree are explained below.
Actions are marked with ζ) in the column "setting range".

Optional Parametrising can also be done using the FST-Editor via the serial interface or via remote data transmission.

Fig. 1.1 FST-Controller menu tree (part 1)

Fig. 1.2 FST-Controller menu tree (part 2)

Fig. 1.3 FST-Controller menu tree (part 3)

Fig. 1.4 FST-Controller menu tree (part 4)

Fig. 1.5 FST-Controller menu tree (part 5)

Fig. 1.6 FST-Controller menu tree (part 6)

Fig. 1.7 FST-Controller menu tree (part 7)

Fig. 1.8 FST-Controller menu tree (part 8)

TEST MENU

Fig. 1.9 FST-Controller menu tree (part 9)

1.2 MAIN MENU - Service

All menu items with adjustable values can be deactivated by entering the value " 0 ".

Menu item	Description	Setting range
Error List	Displays the last 100 error messages (see Chapter 8).	
Clear Error List	Delete entries in the error list.	$\begin{gathered} \leftrightharpoons \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Service-Counters Clear All Counters	The controller has three internal service counters for drives, motor hours and door movements. A service interval can be allocated to each counter so that a due service is signalled via a programmable input/output. The current counter values for Motor Hour br ives and Dog Movement can be reset here (e.g. after a service).	$\begin{gathered} \square \mathrm{YES} \\ \text { NO } \end{gathered}$
Service-Counters Set Interval	Overwrite counter values To Service with the values of the Intervel counters (e.g. after a service).	$\begin{gathered} \square \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Service-Counters -Motor-Hours Since Day1	Motor hours since commissioning of the FST-Controller. This value cannot be reset.	Read only
Service-Counters -Motor-Hours Current	Motor hours since lastieme mi Gontere.	Read only
Service-Counters -Motor-Hours To Service	Motor hours remaining until the next service.	Read only
Service-Counters -Motor-Hours Interval	Motor hours of the maintenance interval.	$0 . . .9999$ h
Service-Counters Drives Since Day 1	Drives since commissioning of the FST-Controller. This value cannot be reset.	Read only
Service-Counters Drives Current	Drives since lastiemr hi Conters.	Read only
Service-Counters Drives To Service	Drives remaining until the next service.	Read only
Service-Counters Drives Interval	Drives of the maintenance interval.	0 ... 99999
Service-Counters Door Movements Since Day 1	Door movements since commissioning of the FST-Controller. This value cannot be reset.	Read only
Service-Counters Door Movements Current	Door movements since last Cleme hi Gomiers.	Read only
Service-Counters Door Movements To Service	Door movements remaining until the next service.	Read only

Menu item	Description	Setting range
Service-Counters - Door Movements - Interval	Door movements of the maintenance interval.	$0 \ldots 99999$
Statistik RESET	Reset the internal drive and call statistics of the FST.	G YES NO
Statistics	At present, the statistic functions can only be accessed via remote data transmission.	
Error Messages	Enable output of error messages (programmable inputs/ outputs, modem, PAM, fax)	ON OFF
after Error: LED...	Function of the error LED on the FST board after adding a new entry to the error list.	FLASHING OFF

1.3 MAIN MENU - Drive

All menu items with adjustable values can be deactivated by entering the value " 0 ".

Menu item	Description	Setting range
Start Monitoring	Maximum time permitted between pre-selection of the drive and leaving the levelling position. If the car does not leave the levelling position during the set time the system will be shut down with DRE-GTRET FROELEM (see "DED-STRET FकठLEIt" on page 154).	$0 \ldots 30 \mathrm{sec}$
Drive type	Drive type used. Can be selected from a list with all common drive types.	
Brake Monitoring	Monitoring of the drive brake (brake bleed contact) via terminal VSM X4.7. When starting input VSM X4.7 must be activated during the set Ereme Deley (+24 V). When stopping the input must be deactivated during the set Ereme Del.en. If this fails the system will be shut down with DetiERGE FGTLUE (see "DRH-DemE FGTuPE" on page 155).	$\begin{aligned} & \hline \text { YES } \\ & \text { NO } \end{aligned}$
Brake Delay	Maximum permitted time between activation of the drive brake and confirmation from the brake bleed contact on terminal VSM X4.7 (see Eryen Monitorime).	$0 \ldots 9999 \mathrm{~ms}$
Drive Speeds Possible	Possible drive speeds V8...V1 of the set drive ("1" stands for speed possible).	Read only
Drive Speeds Enabled	Enabled drive speeds V8...V1 of the set drive ("1" stands for speed enabled). Only speeds displayed with " 1 " in Foscible can be enabled!	$\begin{aligned} & 00000000 \ldots \\ & 11111111 \end{aligned}$
Drive Speeds Calibrated	Drive speeds V8...V1 successfully measured during the calibration run (" 1 " stands for speed calibrated). After a successful calibration run all speeds displayed with " 1 " in Enemiled must be displayed with " 1 " in Celi ibreted	Read only
Motor Monitoring	Monitoring of the motor temperature via terminal VSM X4.5. If the terminal is activated $(+24 \mathrm{~V})$ the system will be shut down with page 155).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Motor Run-on	Run-on time of the drive after the levelling position has been reached. Only required for improving the performance of unregulated drives.	$0 \ldots 2 \mathrm{sec}$
Relevelling	Adjusting with car and shaft doors open. This parameter must only be activated when using the A6 Safety Circuit! The following steps are required to deactivate an integrated A6 Safety Circuit: - SetPrenpenime = W0 - Set Televelime = W0 - Disconnect power supply of the safety circuit (terminals 518, 519)	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Relevelling Delay	Delay between recognising that the car is not levelled and starting relevelling. This parameter guarantees smooth relevelling for swaying cars.	$0 \ldots 9999 \mathrm{msec}$

Menu item	Description	Setting range
Speed correction function	If the drive is equipped with a speed correction function, this parameter can be activated to optimise floor to floor travel (see page 115).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Emergency Stop: In-car calls	Handling of pending in-car calls after a safety circuit interruption in the emergency stop area (before terminal 33) while the car is moving.	KEEP DELETE
Emergency Stop: Stop	Handling of landing calls after a safety circuit interruption in the emergency stop area (before terminal 33) while the car is moving. - Yes: Landing calls are blocked. The car can only be moved with in-car commands. - NO: Pending landing calls are deleted. Landing calls will be enabled again after the safety circuit has been closed.	$\begin{aligned} & \hline \text { YES } \\ & \text { NO } \end{aligned}$
Homing Time	Maximum time without a car call before an hydraulic lift automatically travels to the lowest floor.	$0 \ldots 15 \mathrm{~min}$
Contactor Monitoring	Monitoring of the main contactors on terminal VSM X4.6 via auxiliary contacts (normally closed). When stopping input VSM X4.6 must be deactivated during the set Cont mem Wione Time. If this fails the system will be shut down with MUNTTUETWe" on page 156).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Contactor Mon. Time	Delay between stopping and reaction of the contactor monitoring function.	$0 \ldots 9999 \mathrm{msec}$
Start Method	Start methods with hydraulic pumps	STAR/DELTA SOFT-START
Star / Delta	Delay when starting an hydraulic lift (either due to switching time from star to delta or by delayed opening of the valve).	$0 \ldots 5 \mathrm{sec}$
End-Sw.Speed Mon.	Monitoring of drive speed when approaching the top or bottom limit. If the speed is too high when the car approaches a limit it will be stopped immediately and shut down with DRE-ELD Si. SFED WH. (see "V80\%-SpeedMon" on page 134 and "DRT-ELD Fiwes SEEE" on page 155).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Change Time	Minimum delay when switching the main contactors (fast to slow) of unregulated lift motors.	$0 \ldots 0.5 \mathrm{sec}$
Stop Max	Maximum number of door contacts or locking device interruptions (terminals 37 and 40) during a run before all calls will be deleted (see "जिए DUサe Luek" on page 153). This system will not be shut down. It will wait for new calls.	$0 \ldots 10$
Holding device	Controlling a holding device for hydraulic lifts (see System description - Holding device).	$\begin{aligned} & \hline \text { YES } \\ & \text { NO } \end{aligned}$
Warm-up drive	Automatic warm-up drive to the top landing. This function prevents cooling of the hydraulic oil. The timer starts after the homing drive is completed.	$0 \ldots 9999$ min
Special Params -Time-1	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$0 \ldots 65535 \mathrm{msec}$
Special Params -Time-2	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$0 \ldots 65535 \mathrm{msec}$
Special Params -Time-3	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$0 \ldots 65535 \mathrm{msec}$
Special Params -Time-4	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$0 \ldots 65535 \mathrm{msec}$

Menu item	Description	Setting range
Special Params -Time-5	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	0 ... 65535 msec
Special Params -Time-6	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	0... 65535 msec
Special Params -Switch-1	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{gathered} \Rightarrow \text { ON } \\ \text { OFF } \end{gathered}$
Special Params -Switch-2	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{gathered} \square \mathrm{ON} \\ \mathrm{OFF} \end{gathered}$
Special Params -Switch-3	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{gathered} \Rightarrow \text { ON } \\ \text { OFF } \end{gathered}$
Special Params -Switch-4	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{array}{\|c} \hline>\mathrm{ON} \\ \text { OFF } \end{array}$
Special Params -Switch-5	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{array}{\|c} \hline \Rightarrow \text { ON } \\ \text { OFF } \end{array}$
Special Params -Switch-6	Special parameters for drive specific programming. Only change this value after consulting NEW LIFT!	$\begin{array}{\|c} \hline \boldsymbol{O} \text { ON } \\ \text { OFF } \end{array}$

Speed correction function

After a successful calibration drive the FST-Controller knows the acceleration and deceleration characteristics for each drive speed. This enables the controller to select the optimum drive speed for the distance to be covered.
The parameter 5eed correction funt ion determines if the maximum selected drive speed must be reached during each drive (travel distance > acceleration distance + braking distance + crawling distance), or if the drive has a speed correction function to optimise the drive curve without reaching the maximum speed (travel distance > deceleration distance + crawling distance).

Example: Travel from floor A to floor B (distance between floors: 2.6m)

- Nominal speed V2: Braking distance: 2m, acceleration distance: 2m
- Intermediate speed V1: Braking distance: 1 m , acceleration distance: 1 m
- Crawling distance: 0.05m

Drive from A to B without speed correction:

Speed V1 is selected, because $2.6 \mathrm{~m}>1 \mathrm{~m}+1 \mathrm{~m}+0.05 \mathrm{~m}$

Fig. 1.10 Drive without speed correction

Drive from A to B with speed correction function enabled:

Speed V2 is selected, because $2.6 m>2 m+0.05 m$

Fig. 1.11 Drive with speed correction

1.4 MAIN MENU - Config

All menu items with adjustable values can be deactivated by entering the value " 0 ".

Menu item	Description	Setting range
Commissioning Calibration drive	Carry out calibration drive. During a calibration drive four measuring drives are required for each drive speed. The acceleration and braking behaviour for each speed is determined automatically. The controller uses this information to select the optimum speed and the correct braking point for each drive.	$\begin{gathered} \leftrightarrows \text { YES } \\ \text { NO } \end{gathered}$
Commissioning Learn drive	Carry out learn drive. During the learn drive, the car automatically travels upwards through the entire shaft at inspection speed. The controller determines the exact position of the solenoids for solenoid switches "ZoneB", "Corr.Bottom" and "Corr.Top". The levelling positions of the floors are automatically centred in the door zones after the learn drive! The learn drive is only required when using incremental positioning.	$\begin{gathered} \square>Y E S \\ N O \end{gathered}$
Commissioning - Set Floor [n]	The current position of the car is entered as a point of reference for the entire shaft. The levelling positions of the remaining floors are adjusted to the current position of the car.	0 ... top floor
Commissioning -Correct-levelling	Correction of the levelling position on the floor where the car is currently located. The measured value must be entered (car is too high: positive sign + ; car is too low: negative sign -).	-250 ... 250 mm
Commissioning Cal. V-tolerance	Measuring tolerance when measuring the speed of the calibration run. The set value should only be changed after consulting NEW LIFT. The calibration results are influenced by the measuring tolerance.	$1 . .100 \%$
Commissioning Installation Mode	Suppresses error messages that would prevent installation drives if the controller has not yet been fully commissioned. Enables installation drives using the inspection and auxiliary controls without connecting the sensor and the car control module.	ON OFF
Prio-Landing/Car Landing Prio. Type	Activation type "Priority Landing". - Hard: All in-car and landing calls are deleted. - Soft: In-car calls remain, landing calls are deleted.	Hard Soft
Prio-Landing/Car Landing Prio. Time	Delay for switching off "Priority landing" after reaching the target floor.	$0 \ldots 999 \mathrm{sec}$
Prio-Landing/Car Landing Prio. Prog.	Variations of "Priority landing": - Auto 1: after reaching the target floor the "Priority landing" state remains active until the next in-car call. - Auto 2: after reaching the target floor "Priority in-car" is activated automatically. - Standard: when reaching the target floor the system switches to normal operation after the "Limitem Fr ig" Time" has elapsed.	Auto 1 Auto 2 Standard
Prio-Landing/Car Car Prio. Type	Activation type "Priority car" - Hard: All in-car and landing calls are deleted. - Soft: In-car calls remain, landing calls are deleted if Keep mmine mate $=0$ is set.	Hard Soft

Menu item	Description	Setting range
Prio-Landing/Car Keep landing calls	After activating "soft" priority car, landing calls will also be kept.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Park Drive Enable	Enable park drive program.	$\begin{aligned} & \hline \text { YES } \\ & \text { NO } \end{aligned}$
Park drive Program	Parking drive characteristics of the lift system (see "Park Drive Programs" on page 126).	
Auto Test Drive Mode	Automatic call generation for testing purposes. Drive characteristics of the Auto Test Drive: - Sequence: floors are approached sequentially $(0,1,2,3,2,1,0,1, \ldots)$ - Shuttle: car shuttles between "Lo-Limit" and "Hi-Limit". - Random: floors are approached in a random sequence.	Sequence Shuttle Random
Auto Test Drive -In-car calls	Automatically generated in-car calls during the auto test drive.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Auto Test Drive Landing calls	Automatically generated landing calls during the auto test drive.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Auto Test Drive Doors	Enables the car doors during the auto test drive. The set value corresponds to the following bit mask:	$0 \ldots 7$
Auto Test Drive -Floor-Limit	When activated only floors between Liemite and HiLimit will be approached.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Auto Test Drive -Lo-Limit	Lowest floor of the auto test drive.	0 ... top floor
Auto Test Drive -Hi-Limit	Highest floor of the auto test drive.	0 ... top floor
Auto Test Drive -Time-Limit	The auto test drive will be disabled automatically after two hours.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Auto Test Drive Interval	Time between two commands during the auto test drive.	$0 \ldots 255 \mathrm{sec}$
LON Configuration Search LON Modules	A bus scan is carried out to determine the modules connected to the bus. All LON modules connected to the bus will be entered in a table that can be displayed with him Limd Modules.	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
LON Configuration Show LON Modules	Displays all LON modules connected to the bus The list of LON modules is generated/updated with the menu item Gexth Lon modules. See "Show LON Module" on page 127.	Read only
Modem / Fax / LMS LMS floor-locking	Enable external floor-locking via remote data transmission (LMS Lift Monitoring System).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Modem / Fax / LMS FST FAX Enable	Enables all fax functions (see Installation \& Commissioning Fax modem).	$\begin{aligned} & \hline \text { OFF } \\ & \text { ON } \end{aligned}$
Modem / Fax / LMS Tel. Number FST	Phone number of the FST modem (see Installation \& Commissioning - Fax modem).	ASCII

Menu item	Description	Setting range
Modem / Fax / LMS Modem Number 1	1. Phone number for a modem connection (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS Modem Number 2	2. Phone number for a modem connection (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS FAX Number 1	First phone number for a fax connection (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS FAX Number 2	Second phone number for a fax connection (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS Dial prefix	Type of telephone network (see Installation \& Commissioning - Fax modem).	Tone-dial Pulse-dial ISDN
Modem / Fax / LMS Modem InitString 1	Initialisation of modem 1, ASCII string according to modem documentation (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS Modem InitString 2	Initialisation of modem 2, ASCII string according to modem documentation (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS FAX InitString 1	Initialisation of fax 1, ASCII string according to modem documentation (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS FAX InitString 2	Initialisation of fax 2, ASCII string according to modem documentation (see Installation \& Commissioning - Fax modem).	ASCII
Modem / Fax / LMS Dial Attempts FAX	Dialling attempts to establish a fax connection (see Installation \& Commissioning - Fax modem).	0 ... 10
Modem / Fax / LMS Pause between Dial	Time between two dial attempts of the modem (see Installation \& Commissioning - Fax modem).	$0 \ldots 1000 \mathrm{sec}$
Modem / Fax / LMS Fax Numbers Used	Enables fax numbers (see Installation \& Commissioning - Fax modem).	$0 \ldots 2$
Modem / Fax / LMS FAX Auto Send	Time between two automatic fax reports (see Installation \& Commissioning - Fax modem).	OFF every Hour every Day every Week every Month
Modem / Fax / LMS FAX Control	See Installation \& Commissioning - Fax modem.	0000000000000000 .. 111111111111111
Modem / Fax / LMS Send Test Fax	See Installation \& Commissioning - Fax modem.	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \text { NO } \end{gathered}$
I/O Configuration I/O Ports RAW	Configure programmable inputs/outputs.	$\begin{aligned} & 00000000 \ldots \\ & 11111111 \end{aligned}$
I/O Configuration I/O Flags Delay	Delay of inputs and outputs . Depending on Bit1 of menu item CTEL seconds or switching operations must be set.	0 ... 9999
I/O Configuration I/O Flags MASK	System state where an input/output changes to active.	$00000000 \text {... }$ FFFFFFFF
I/O Configuration I/O Flags Ctrl.	Flag Check.	$00 \ldots \mathrm{FF}$

Menu item	Description	Setting range
I/O Configuration I/O Error ID	Error type to activate error output.	NO ERROR ... CAR LIGHT FAILURE
I/O Configuration I/O Error CTRL.	Configuration of error output.	00 ... FF
EAZ Configuration Use Text	Enable user defined floor names. - YES: A two-digit floor name can be entered in ERE Text for each floor This name will be used by the FST display and by all LON floor displays. - NO: Floor names $0,1,2, \ldots$ will be used by the FST display and by all LON floor displays.	YES NO
EAZ Configuration EAZ Text	Two-digit name for each floor (see Use Text.).	2-digit ASCII
EAZ Configuration Bottom Flr. Car	Initial value for the position indicator code issued by FPM X4. - 0: code starts at bottom floor with "00000000". - 1: code starts at bottom floor with "00000001". The type of position indicator code can be set in ERZ tyFe (see "Car-Operate-Panel -" on page 122).	$0 \ldots 1$
EAZ Configuration Bottom FIr. Hall	Initial value for the position indicator code issued by ADM X3. - 0: code starts at bottom floor with "00000". - 1: code starts at bottom floor with "00001". The type of position indicator code can be set in GDT-EGZ thre (see "ADM-EAZ type" on page 125).	$0 \ldots 1$
EAZ Configuration -Target-Floor Car	Activation of the position indicator at the braking point when approaching a floor. - Show Target Floor: The target floor is displayed at the braking point already. As a consequence, floor names could be skipped if the deceleration distance covers multiple floors. - Show Physical Floor: The target floor is displayed after reaching the levelling position.	Show Target Floor Show Physical Floor
EAZ Configuration -LON-EAZ type	Type of connected LON position indicators. Depending on the type the options set in ERY Gotis have different meanings (see description of the position indicator).	$\begin{aligned} & \hline \text { EAZ-256 } \\ & \text { EAZ-40/64 } \\ & \text { EAZ-VFD/LCD } \end{aligned}$
EAZ Configuration -LON-EAZ Number	LON position indicator selected for parametrising. Each LON position indicator has a unique number (0...255). If 255 is set, the settings apply to all connected LON indicators.	$0 \ldots 255$
EAZ Configuration -LON-EAZ Config.	Options for the connected LON position indicator. Depending on the Lidfre thee the options set here have different meanings (see description of the position indicator).	$\begin{aligned} & \hline 00000000 \ldots \\ & 11111111 \end{aligned}$
EAZ Configuration -LON-EAZ Download	Transfer a configuration file from a PC-Card to the LON 	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \text { NO } \end{gathered}$
EAZ Configuration -IRT-code	Access code for the remote function. With indicator types EAZ-VFD and EAZ-LCD the FST-Controller can be parametrised from the indicator using the FST-IRT infrared remote control. This requires entering the access code set here (see Quick Guide - FST-IRT Remote Control).	00000 ... 99999

Menu item	Description	Setting range
EAZ Configuration Display Dimming	Dimming the LON display EAZ-256 when the car light is off to reduce energy consumption. This function can be activated separately for in-car and landing indicators. - 00000000: Dimming function off. - 00000001: Only in-car indicators are dimmed. - 00000010: Only landing indicators are dimmed. - 00000011: All indicators (in-car and landing) are dimmed.	$\begin{aligned} & \hline 00000000 \ldots \\ & 11111111 \end{aligned}$
Chime Functions Chimes Enabled	Chime sounds for car and/or landing calls.	$\begin{aligned} & \hline \text { YES } \\ & \text { NO } \end{aligned}$
Chime Functions Chime Duration	Impulse length of the chime trigger signal.	$0 \ldots 5 \mathrm{sec}$
Chime Functions Chime Trigger	Distance of the car from the levelling position of the target floor that triggers the chime.	$0 \ldots 9999 \mathrm{~mm}$
Chime Functions Chime when in floor	The chime also sounds when the car doors are closed and the car is already at the target floor when the lift is called with a landing call.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Chime Functions Landing Chimes	Chimes sounds for landing and/or in-car calls.	Landing calls Car+Landing calls
ID Lift ID-Number	Identifies the FST-Controller in group operation. The setting must correspond to the jumper settings (JK1, JK2 and JK4) on the FSM Car Control Module (see "Jumpers" on page 59) and the FPM Car-Operate-Panel ("Jumpers" on page 66)! If this fails the system will be shut down with Deti- page 155). Single lifts are always set to Lift A.	A ... H
ID - Lift ID-Name	Location, identification of the FST-Controller for modem, remote data transmission and PAM (LMS).	20-digit ASCII
ID - NEW-Factory No.	NEW LIFT factory number of the FST-Controller (set in the factory).	20-digit ASCII
ID Lift factory no.	Lift manufacturer's factory number of the system.	20-digit ASCII
ID -Project-Code	Code number of a project specific software version. Only issued for special projects, do not change!	$\begin{aligned} & \hline 000000 \ldots . . \\ & 999999 \\ & \hline \end{aligned}$
Group Settings -GST-Menu	See GST Manual.	
Group Settings Lift ID-Number	See ifte ib-humber.	A ... H
Group Settings Group Member	Integrate FST-Controller in a GST Group Controller (see GST Manual).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Group Settings Group Floor Offset	Floor offset in relation to the lowest floor in the group (see GST Manual).	$0 \ldots 15$
Group Settings - Flr Offset-Car	The value set in Graf Floor itet is the lowest floor for the position indicator in the car (if not set the value „0" will be used, see GST Manual).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Group Settings Flr Offset-Landing	The value set in Grof Floor itet is the lowest floor for the landing position indicators (if not set the value „0" will be used, see GST Manual).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Group Settings -ADM-Bus Mask-1	Allocation of the FST to the individual bus lines of the group in normal mode (see "ADM-Bus Masks" on page 127 and the GST Manual).	$00 \ldots \mathrm{FF}$

Menu item	Description	Setting range
Group Settings -ADM-Bus Mask-2	Allocation of the FST to the individual bus lines of the group in simplex mode ("separated group mode", see GST Manual).	00 ... FF
Anti Nuisance Maximum Car Calls	Maximum permitted number of accepted in-car calls. This parameter helps avoid unnecessary drives caused by in-car calls. A reasonable number is the maximum number of passengers.	0 ... 63
Anti Nuisance Stops w/o Exit	All in-car calls will be cleared if the photocell does not trigger for the set number of stops. This parameter helps avoid unnecessary drives caused by in-car calls.	$0 \ldots 63$
Anti Nuisance Empty Car Sense	If the input "Empty Car Sense" is activated, no more in-car calls will be accepted (see "FSM: X11" on page 63). This parameter helps avoid unnecessary drives caused by in-car calls. Only activate this function if the weight sensor is equipped with a "Empty Car Sense" (Level-Empty) contact and this contact is connected to the FSM!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Anti Nuisance Call Direction	All in-car calls against the current direction of travel will be cleared when changing direction (e.g. when reaching a top or bottom limit. This parameter helps "educate" passengers to use the two button control correctly. Only activate when using a two button contro!!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Anti Nuisance Always Clear Up/Dn	When approaching the target floor both landing calls (up and down) will be deleted. This parameter helps avoid unnecessary drives caused by "double calls" from one passenger when using a two button control. Only activate when using a two button control!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car Ventilator Control Mode	Control modes for the Car Ventilator (see "Car ventilator" on page 128).	Switched Off Manual On/Off Manual+Off-Delay Automatic+Off-Delay
Car Ventilator Vent. Off Delay	Run-on time of the car ventiator in modes mander 	0 ... 250 sec
Car Light Car Light Off Delay	Automatic deactivation of the car light after each drive after the set time.	0 ... 250 sec
Car Light Monitoring	Monitoring the car light with a current sensor (FSM X14). If this parameter is activated the function of the car light is monitored with a current sensor. The system will be shut down with The LTGHT FGTLiEE if the car light fails (see "CAR LIGHT FAILURE" on page 157).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car Light Evac. - Light Off	Switch off the car light after an evacuation drive.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel EAZ type	Position indicator code issued by FPM X4. - HEX: Binary code - 1-of-N: Separate signal for each floor (only possible up to a maximum of eight floors) - GRAY: Gray Code The initial value for the bottom floor can be set in Eet tom Flr : CIr (see "Bottom Flr. Car" on page 120).	HEX 1-of-N GRAY
Car-Operate-Panel Lamp type	Type of lamp for in-car acknowledgement (important to avoid flickering).	LED Filamt
Car-Operate-Panel -Display-0	Function of pin X4.39 on the FPM Car-Operate-Panel. See "Display-0 ... 2" on page 128.	$\begin{aligned} & 00000000 \ldots . \\ & 11111111 \end{aligned}$
Car-Operate-Panel -Display-1	Function of pin X4.38 on the FPM Car-Operate-Panel. See "Display-0 ... 2" on page 128.	$\begin{aligned} & \hline 00000000 \ldots \\ & 11111111 \end{aligned}$

Menu item	Description	Setting range
Car-Operate-Panel -Display-2	Function of pin X4.5 on the FPM Car-Operate-Panel. See "Display-0 ... 2" on page 128.	$\begin{aligned} & 00000000 \ldots \\ & 11111111 \end{aligned}$
Car-Operate-Panel - OPEN = A+B	The door open signal (FPM X4.35 or X4.36) is active for all car doors.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel - $\text { CLOSE }=A+B$	The door close signal (FPM X4.2 or X4.3) is active for all car doors.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel OPEN = last	The door open signal (FPM X4.35 or X4.36) is only active for the car door last opened.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel -Divider-Door	Car door control for lifts with a too large footprint of the car. This parameter must only be activated if there is a car door. If this parameter is activated the FPM input "Door A Open" (X4.35) is used to query the door divider contact (normally closed)! If the divider door is open the input is activated and the car will be shut down on the current floor with "OVERLOAD". The "OVERLOAD" state can be reset with the input "CAR PRIORITY" on the FPM (key switch on the inside panel, X4.37).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel Card Reader	Control of a card reader to enable in-car calls. Only activate after consulting NEW LIFT. This requires a modification of the system specific wiring! If this parameter is activated, no in-car calls can be placed without a card reader!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel - -"- Clear Opt	Delete pending in-car calls when activating the card reader.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel -Chime-Roof	Separate landing chime for upward travel installed on the car roof. The chime signal is issued on FPM output „Display-1", if parameter DisFly $\mathrm{I}=\mathrm{BEDEDED}$ is set (see "Display-0 ... 2" on page 128).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel -Chime-Floor	Separate landing chime for downward travel installed below the car floor. The chime signal is issued on FPM output (see "Display-0 ... 2" on page 128).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel DoorOpen NC	Interpret the door open signal (FPM X4.35 or X4.36) as normally closed contact.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel -O-Load Blink	Activate flashing mode of the overload display (FPM X4.6).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Car-Operate-Panel -Pin-34 Functn	Function of input X4.34 of the FPM (see "Pin-34 Functn" on page 129).	$0 . .99$
Car-Operate-Panel $3 \times$ Call=Clear	An already acknowledged in-car call can be deleted by placing the call another three times.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Fireman Options Fire Standards	Fire standard the fireman mode complies to (see Manual for Fireman Mode).	TRA-266 AS-1735 (Australia) HongKong SIA
Fireman Options Fire->Fireman (ADM)	A fire signal issued through an ADM landing button module automatically activates the fireman mode after reaching the floor with the fire (see Manual for Fireman Mode).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Fireman Options Fire $->$ Fireman (I/O)	A fire signal issued through a programmable input/output automatically activates the fireman mode after reaching the floor with the fire (see Manual for Fireman Mode).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Fireman Options Off only in M-Flr	The fireman mode can only be deactivated on the main floor (see Manual for Fireman Mode).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$

Menu item	Description	Setting range
Fireman Options Door Open in M-Fir	Default position of the car doors on the main floor in case of fire (see Manual for Fireman Mode).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Fireman Options Fire Main Floor	Target floor of the evacuation drive in case of fire (see Manual for Fireman Mode).	0 ... 63
Fireman Options Fire MainFlr Doors	Control of the car doors after reaching the fire main floor (see Manual for Fireman Mode).	All doors Door A only Door B only Door C only
Fireman Options Smoke Evac. Plan	The fire input is interpreted as a smoke detector signal (see Manual for Fireman Mode).	On Floor Above Floor Below Floor
Fireman Options Fire sig. Pulsed	The fire input is interpreted as a pulse and must be reset (see Manual for Fireman Mode).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Fireman Options Fireman Mode Reset	Reset the fireman mode completely. This should always be done after changing the settings of the fireman mode (see Manual for Fireman Mode).	$\begin{array}{r} \square \text { YES } \\ \text { NO } \end{array}$
Weight Sensor Sensor-Type	Operating principle of the weight sensor. - ANALOGUE: An analogue weight sensor with a separate bus connection displays the load of the car as a percentage. The switching levels for empty, full and overload must be set in buel frim, bevelfull and buel huer. - DIGITAL: A digital weight sensor with separate outputs for empty, full and overload is connected to the terminals of the FSM Car Control Module (see "FSM: X11" on page 63). The switching levels are set directly on the weight sensor.	ANALOGUE DIGITAL
Weight Sensor Level-Empty	Level for the empty state when using an analogue weight sensor.	$000 . . .200 \%$
Weight Sensor Level-Full	Level for the full state when using an analogue weight sensor.	000 ... 200 \%
Weight Sensor Level-OverL	Level for the overload state when using an analogue weight sensor.	$000 . . .200 \%$
Speech Output Activated	Activates control of a speech processor using an additional SPK Module (see System description - Speech Output).	$\begin{aligned} & \mathrm{ON} \\ & \mathrm{OFF} \end{aligned}$
Speech Output Output-type	Encoding of the SPK Module's output. - HEX: Binary code - 1-of-N: Separate signal for each output - GRAY: Gray Code See System description - Speech Output.	$\begin{aligned} & \text { HEX } \\ & \text { 1-of-N } \\ & \text { GRAY } \end{aligned}$
Speech Output Speech-Codes Speech-Codes	Allocation of the speech output encoding (see System description - Speech Output).	0 ... 255
Project-Config Basis	Basic options for project specific software versions. Only change after consulting NEW LIFT!	0 ... 9999
Project-Config LON Modules	LON options for project specific software versions. Only change after consulting NEW LIFT!	0 ... 255
Landing buttons Landing Call Enable	Delay when enabling landing calls again after special drives. This prevents immediate starting of the car, e.g. when switching off inspection control.	0 ... 30 sec

Menu item	Description	Setting range
Landing buttons ADM-EAZ type	Position indicator code issued by ADM X3. - HEX: Binary code - 1-of-N: Separate signal for each floor (only possible up to a maximum of five floors) - GRAY: Gray Code The initial value for the bottom floor can be set in Eotiom FIr: Hill (see "Bottom Flr. Hall" on page 120).	HEX GRAY 1-of-N
Landing buttons Special Display 0	Function of terminal 14 of the ADM-S landing button module (the function of terminal 14 must be set to "Soft-1" in the FSTEditor). 0: No function 1: "Door open" display for revolving doors 2: Fireman Mode active 3: Priority car or landing active 4: Fireman Mode or fire signal active 5: Out-of-use (display only when the system is shut down) 6: Priority car active	0 .. 255
Landing buttons Special Display 1	No function at present	0 .. 255
Lift-Off Lift-Off Program	There can be more than one input for remote shutdown. - FST X7. 14 - ADM X3 - RIO Module - GST (see GST Manual) After activating one of the inputs the controller triggers a "hard" or "soft" remote shutdown drive to the remote shutdown floor. Then the car light is switched off and the system is shut down. The door open button on the in-car panel remains active! - HARD: All in-car and landing calls are deleted. - SOFT: In-car calls remain, landing calls are deleted.	HARD SOFT
Lift-Off Lift-Off Floor	Target floor of the remote shutdown drive.	0... 63
Lift-Off Lift-Off Doors	The door set here will be opened and closed again after the remote shutdown drive before the car light is switched off.	All doors Door A only Door B only Door C only
Special Functions Loading Function	Activate the special "Loading Function" (see "Loading Function" on page 129).	
Special Functions Lobby-Stop	Activate the special function "Lobby-Stop" (see "Lobby-Stop" on page 130).	
Special Functions Attika Control	Activate the special function "Attika Control" (see System description - Attika Control).	
Special Functions Bank-Control	Activate the special function "Bank-Control" (see System description - Bank-Control).	
Special Functions Ramp-Drive	Activate the special function "Ramp-Drive" (see System description - Ramp-Drive).	
Blinking Approach	The indicator lights for in-car and landing calls flash when approaching the target floor.	$\begin{aligned} & \mathrm{YES} \\ & \mathrm{NO} \end{aligned}$
Insp. Door Test	Enable door open/door close buttons (see "FPM: X4" on page 69) for moving the doors in dead man control. Door open/door close buttons can be installed on the car roof and wired parallel to the buttons of the in-car panel.	YES NO

Menu item	Description	Setting range
Direction	Priority of the current direction of travel before changing direction. Important parameter for collective control: The time must be set at least so that passengers calling the car with a landing call have ample time to enter the car and issue a command for the current direction of travel (at least 5 ...15 sec, depending on the size of the car). If the delay is too short the car can be "snatched away" by a landing call in the opposite direction before the in-car call has been placed.	$0 \ldots 30$ sec
Departure Arrows	Mode of the departure arrow outputs ADM X3.8 and X3.9 on the landing button module: "YES": Display of direction with departure arrows "NO": Display of direction with direction arrows "Only when door open": Display of direction as departure arrow only when car door is open	Yes No only when door open
Depart.Arrows Max	Maximum on-time of departure arrows when the car is not moving.	$0 \ldots 9999$ sec
DoorC=Emerg-EndSw.	Door C input VSM X1.5 on the pre-control module is interpreted and stored as a top emergency limit switch with hydraulic lifts, according to EN 81.	YES NO

Park Drive Programs The FST-Controller has a scheduler (calendar) that enables time- and daydependant park drive programs. Each day of the week (SU - SA) can de divided in three time zones. Different park drive programs (park floor and waiting period) can be set for each of these time zones.

Code	Description	Setting range
De:	Weekday	SU ... SA
+mm	Start time of the time zone	0:00 ... 23:45
to	End time of the time zone	0:00 ... 23:45
Pre	Program $1 . . .3$ (for time zone 1... 3)	0 ... 2
Flogr	Floor: park floor	0 ... top floor
W-Time	Waiting period before starting the park drive.	$0 \ldots 60$ min

Show LON Module After completing the "Search LON Modules" function the FST provides a list with all LON Modules connected to the LON bus.

The list is structured as follows:

```
LDN Todule [bul/beg
```



```
TD:01 00 उ0 49 69 00
[00] [00] [00] [00]
```

A	The first LON Module of five total is displayed.
B	Module Type "FSM" with software version "00117", appendix "010/ $002 "$.
C	LON-ID of the module: „010030496900"
D	First four configuration bytes of the module.

T/ \downarrow	Switch to configuration bytes $5 . .12$
[+ +1	Show next LON Module.
[s+ $+\sqrt{1}$	Show last LON Module.
θ	Toggle line C of ADM Modules.

[6®]	E0	16	[60]
[0¢]	[0¢]	[6®]	[60]
ए-¢]	[6®]	[60]	[60]

A	
B	Configuration bytes $1 \ldots 4$ of the module.
C	Configuration bytes $5 \ldots 8$ of the module.
D	Configuration bytes $9 \ldots 12$ of the module.

Lon Todule [064/005]
Frempebelt2 bubeb
Flourne bour $\mathrm{EO}=0$
T60] [60] $\mathrm{EQ日} \mathrm{TEOI}$

A	
B	
C	Landing button module on floor 02, door side A and bus line 0.
D	

ADM-Bus Masks The bus masks are two-digit hex values.

Fig. 1.12 Function of the individual bits

Car ventilator

Setting	Description
Guithed Oft	The car ventilator is switched off.
Mnema On¢	The car ventilator is switched on and off with a button on the in-car panel (input FPM X4.1).
MantiontDely	The car ventilator is switched on with a button on the in-car panel (input FPM X4.1) and switched off after an adjustable delay (see Vent.: Dit Delem).
Humetictort Deler	The car ventilator is switched on automatically for each drive and switched off after an adjustable delay (see Dent. bft Deleni).

Display-0 ... 2 The FPM outputs "Display-0 ... 2" can display various operating states of the system. The states to be displayed are set to "1" in the respective control register according to the following diagram.

Fig. 1.13 Function of the individual bits

If no operating states are selected in the control register ("00000000") the outputs "Display-1" and "Display-2" can have the following functions:

Display-1

- Issue "Chime-Roof" signal if Chime-roteve is set (see "ChimeRoof" on page 123).
- Load display for "Loading Function" (see "Loading Function" on page 129).
- Lift-Boy Mode buzzer (see "Lift-Boy Mode" on page 139).

Display-2

- Issue "Chime-Floor" signal if Chime-faor yES is set (see "ChimeFloor" on page 123).

Pin-34 Functn The input "Loading Button" (FPM X4.34) can have the following functions:

Setting	Function
\mathbf{i}	Loading Button (see "Loading Function" on page 129)
$\mathbf{1}$	Landing Calls ON/OFF
2	Lift-Boy Mode ON/OFF (see "Lift-Boy Mode" on page 140)
3	V.I.P. Mode 2 with "multiple call" ON/OFF
4	V.I.P. Mode 2 with "single call" ON/OFF
$\overline{5}$	Start button for Fireman Mode (Australia)
6	Bank-Control OFF/ON

Loading Function The loading function is activated with the input "Loading button" (FPM X4.34) and is used for loading the car. The car door is kept open until

- the door close button is pressed.
- the maximum loading time Lime Time-men has elapsed.

The loading function provides the following options:

Loading Program

Two loading programs can be selected in Fremern .

Setting	Function
E	- Loading button can be operated with the car door closed, the car door opens after pressing the button. - Pressing the loading button again cancels the loading function.
\mathbf{I}	- The loading button can only be operated with the car door open, the loading button does not work with the doors closed. - Pressing the loading button again resets the maximum loading time. - Issuing an in-car call cancels the loading function.

Maximum loading time

The maximum loading time in seconds can be set in lime Time-men.

Load-Sw.Disp

FPM output "Display-1" (X4.38) can display the loading function if LiedGubise = YES. The display starts flashing 20 sec before the maximum loading time has elapsed (see "Display-0 ... 2" on page 128).

Lobby-Stop With the function "Lobby-Stop" enabled the car does not pass the selectable "Lobby" floor. The car always stops so the employees have the possibility to look in the car.

This function provides the following options:

Enable

The function "Lobby-Stop" is activated in Eneble.
Floor
The "Lobby" floor is set in Fine.

Doors

The car doors to be opened in the "Lobby" floor are set in Denes.
V.I.P. Mode The V.I.P. Mode can be used the dedicate a car to "very important people". There are two V.I.P Modes:

- V.I.P. Mode 1 : Triggered by the LMS or a programmable input/output. Sets all call buttons to "dead man mode".
- V.I.P. Mode 2 : Triggered by FPM input X4.34 (key switch in the car), has the functions described below.

V.I.P. Mode 2

- Triggered by an impulse on FPM input X4.34 (key switch or card reader).
- All pending landing calls are deleted and the landing control is locked.
- Group operation: the lift is removed from the group and returns all pending landing calls to the group control.
- An in-car call must be placed within ten seconds of activation, otherwise the lift will return to normal mode.
- All in-car calls already registered at the time of activation will be executed as usual.
- In "multiple call" mode an unlimited number of in-car calls can be placed (see "Pin-34 Functn" on page 129). This way the V.I.P. Mode can be
extended.
- In "single call" mode (see "Pin-34 Functn" on page 129) only one in-car call can be placed. Further in-car calls can only be placed after activating FPM input X4.34 again.

1.5 MAIN MENU - Positioning

All menu items with adjustable values can be deactivated by entering the value " 0 ".

Menu item	Description	Setting range
Floor Position ABS	Absolute levelling position of a floor. Do not change this value (see Installation \& Commissioning).	0 ... 9999999 mm
Floor Position REL	Levelling position of a floor relative to the bottom floor. This value is entered for each floor according to the system drawing or determined automatically during the learn drive (see Installation \& Commissioning).	-2500 ... 250000 mm
Floor Level UP	Switch-on point for the internal levelling signal below the actual levelling position when moving up. This value corresponds to the braking distance of the crawling speed upwards and is determined automatically during the calibration drive (see Installation \& Commissioning).	0 ... 5000 mm
Floor Level DOWN	Switch-on point for the internal levelling signal above the actual levelling position when moving down. This value corresponds to the braking distance of the crawling speed downwards and is determined automatically during the calibration drive (see Installation \& Commissioning).	$0 \ldots 5000 \mathrm{~mm}$
Floor Zone Sw.UP	Switch-on point for the internal door zone signal above the actual levelling position. Linear positioning: Set value to 200 mm ! Incremental positioning: Do not change value determined automatically during the learn drive! (See Installation \& Commissioning.)	$0 . . .2500 \mathrm{~mm}$
Floor Zone Sw.DOWN	Switch-on point for the internal door zone signal below the actual levelling position. Linear positioning: Set value to 200 mm ! Incremental positioning: Do not change value determined automatically during the learn drive! (See Installation \& Commissioning.)	$0 \ldots 2500 \mathrm{~mm}$
Landing Landing UP	Approach distance of the different drive speeds V1 ... V8 when moving upwards. The values correspond to the braking distance for each speed when moving up. The values are determined automatically during the calibration drive. (See Installation \& Commissioning.)	0 ... 99999 mm
Landing Landing DOWN	Approach distance of the different drive speeds V1 ... V8 when moving upwards. The values correspond to the braking distance for each speed when moving down. The values are determined automatically during the calibration drive. (See Installation \& Commissioning.)	$0 \ldots 99999$ mm
Global Resolutn.	Resolution of the absolute value encoder. This value determines how many bits are sent by the encoder for each millimetre of car movement. If this value is set incorrectly the distances between floors are wrong and the car can hit the limit switch at full speed during the calibration drive (see Installation \& Commissioning).	0 ... 999,9999 bit/mm
Global Direction	Direction of rotation of the absolute value encoder.	Left Right

Menu item	Description	Setting range
Global Encoder type	Type of shaft positioning: - Absolute: Linear positioning with absolute value encoder and tooth belt. - Incremt.: Incremental positioning with incremental encoder on motor or speed limiter.	Absolute Incremt.
Global Max.Floor	Number of floors of the lift system, starting with zero. (Example: 8 floors \rightarrow Setting = 7)	$0 \ldots 63$
Global Crawl Distance	Length of desired crawling distance. The set value is added to the approach distance for each speed (V1 ... V8) determined during the calibration drive. (Setting = $0 \rightarrow$ Direct approach)	-500 .. 500 mm
Global Insp.FAST	Measured deceleration distance of fast inspection speed. The set value shows the deceleration points of the fast inspection drive before the levelling position of the top and bottom landings. If this distance is set too short the car can run into the limit switch. This value should always be checked after a calibration drive and extended if necessary.	0 .. 5000 mm
Global Insp.UP	Measured deceleration distance of slow inspection speed when moving up. The set value shows the switch-off point of the inspection drive before the levelling position of the top landing. If this distance is set too short the car can run into the limit switch. This value should always be checked after a calibration drive and extended if necessary.	$-5000 \ldots 5000 \mathrm{~mm}$
Global Insp.DOWN	Measured deceleration distance of slow inspection speed when moving down. The set value shows the switch-off point of the inspection drive before the levelling position of the bottom landing. If this distance is set too short the car can run into the limit switch. This value should always be checked after a calibration drive and extended if necessary.	$-5000 \ldots 5000 \mathrm{~mm}$
Global ZoneB Output	- Output of the internally generated encoder-B signal (also see "Output encoder-B simulation" on page 42). The output is 0 V if the car is outside the door zone.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Global ZoneB Out.Inv.	Inverts the output of the internally generated encoder-B signal (also see "Output encoder-B simulation" on page 42). - YES: The output is 0 V if the car is in the door zone. - NO: The output is 0 V if the car is outside the door zone.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Global Virt.Zone	Determines whether the values set in Feitionime Fhor - zone Gu, ipentim are real or virtual zone signals. With linear positioning this parameter should always be set to YEE, with incremental positioning always to Incorrect setting of this value can lead to problems with door control and levelling positions after adjusting the levelling!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Relevel. Limits Limit UP ON	The relevelling when moving up starts at the set distance between car and levelling position (see "Relevel. Limits" on page 138).	$0 \ldots 2500 \mathrm{~mm}$
Relevel. Limits Limit UP OFF	The relevelling when moving up stops at the set distance between car and levelling position (see "Relevel. Limits" on page 138).	$0 \ldots 2500 \mathrm{~mm}$
Relevel. Limits Limit DN ON	The relevelling when moving down starts at the set distance between car and levelling position (see "Relevel. Limits" on page 138).	0... 2500 mm

Menu item	Description	Setting range
Relevel. Limits Limit DN OFF	The relevelling when moving down stops at the set distance between car and levelling position (see "Relevel. Limits" on page 138).	0... 2500 mm
Cal-Results -UP-Speed	Speeds measured during the calibration drive for all drive speeds V1 ... VI for upward travel.	-10000... $10000 \mathrm{~mm} / \mathrm{s}$
Cal-Results -UP-Accel.	Acceleration distances measured during the calibration drive for all drive speeds V1 ... VI for upward travel.	0... 50000 mm
Cal-Results -UP-Decel.	Deceleration distances measured during the calibration drive for all drive speeds V1 ... VI for upward travel.	0... 50000 mm
Cal-Results -UP-t_Accel.	Acceleration times measured during the calibration drive for all drive speeds V 1 ... VI for upward travel.	0... 32767 msec
Cal-Results -UP-t_Decel.	Deceleration times measured during the calibration drive for all drive speeds V1 ... VI for upward travel.	$0 \ldots 32767 \mathrm{msec}$
Cal-Results -DOWN-Speed	Speeds measured during the calibration drive for all drive speeds V1 ... VI for downward travel.	-1000 .. $10000 \mathrm{~mm} / \mathrm{s}$
Cal-Results -DOWN-Accel.	Acceleration distances measured during the calibration drive for all drive speeds V1 ... VI for downward travel.	0... 50000 mm
Cal-Results -DOWN-Decel.	Deceleration distances measured during the calibration drive for all drive speeds V1 ... VI for downward travel.	0... 50000 mm
Cal-Results -DOWN-t_Accel.	Acceleration times measured during the calibration drive for all drive speeds V1 ... VI for downward travel.	0... 32767 msec
Cal-Results -DOWN-t_Decel.	Deceleration times measured during the calibration drive for all drive speeds V1 ... VI for downward travel.	$0 \ldots 32767 \mathrm{msec}$
Cal-Results -V80\%-SpeedMon	Speed monitoring point for deceleration monitoring when approaching the levelling position of the top or bottom landing (see "End-Sw.Speed Mon." on page 114).	0... 10000 mm
Cal-Results -V80\%-Distance	Speed monitoring point for deceleration monitoring when approaching the levelling position of the top or bottom landing (see "End-Sw.Speed Mon." on page 114).	$0 \ldots 49999 \mathrm{~mm}$
Pseudo Floors Pos. (Rel.)	Additional stops without shaft doors. "Pseudo Floors" are additional floors without call signals or doors. They can only be approached using the programmable inputs/outputs and are used as locking positions for cable lifts without machine compartment or as parking floors between regular floors.	0... 49999 mm
Increm. Positng. Control	Control register for incremental positioning: Default setting for this parameter: BDEEIEED Only change this setting after consulting NEW LIFT!	$\begin{aligned} & 00000000 \ldots \\ & 11111111 \end{aligned}$

Menu item	Description	Setting range
Increm. Positng. -Auto-Orien.	With incremental positioning an orientation drive to the top or bottom landing is required after switching the controller on and off (also after a power failure). The orientation drive is started automatically after switching the FST-Controller on. Only change this parameter after consulting NEW LIFT!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Increm. Positng. Orien delay	Delay of the orientation drive after switching the FSTController on.	$0 . .9999 \mathrm{~ms}$
Increm. Positng. Corr.Bottom	Position of the switch for bottom correction in [mm]. This is an absolute value. To determine the distance to the bottom floor the absolute value of the bottom floor must be subtracted from the value entered here (see "Position ABS" on page 132). The value is determined automatically during the learn drive and must not be changed!	0.. 9999999 mm
Increm. Positng. Corr.Top	Position of the switch for top correction in [mm]. This is an absolute value. To determine the distance to the top floor the value entered here must be subtracted from the absolute value of the top floor (see "Position ABS" on page 132). The value is determined automatically during the learn drive and must not be changed!	0.. 9999999 mm
Increm. Positng. -ZoneB-Length	Length of the zone signal when relevelling with the $\mathrm{BO} / \mathrm{BU}$ switch. This value is determined automatically during the learn drive.	0... 250 mm
Increm. Positng. -BOBU<->Runoff	Length of the $\mathrm{BO} / \mathrm{BU}$ signal when relevelling with the $\mathrm{BO} / \mathrm{BU}$ switch. This value is determined automatically during the learn drive.	$0 \ldots 250 \mathrm{~mm}$
Increm. Positng. -ZoneB-Hysters	Length of the hysteresis of zone switch B. This value is determined automatically during the learn drive and is limited to 10 mm by the software. In case of problems with the levelling adjustment the levelling for upward travel can be adjusted as described in the installation manual and the levelling for downward travel can be adjusted by changing the hysteresis value.	-100 .. 100 mm
Increm. Positng. -ZoneB-Level	Level of zone switch B if the car is in the door zone. - LO: OV (closed) - HI: +24V (open, default) The setting must correspond to jumper JMP7 on the FST circuit board (see "Jumper JMP7" on page 43).	$\begin{aligned} & \mathrm{LO} \\ & \mathrm{HI} \end{aligned}$
Increm. Positng. -ZoneB-Debnce	Debounce time of zone switch B. Only change this value after consulting NEW LIFT!	$0 \ldots 40 \mathrm{msec}$
Increm. Positng. -CB/CT-Level	Level of the CB/CT switch if the car is at the top or bottom landing. - LO: OV DC - HI: +24V (default) The setting must correspond to jumper JMP7 on the FST circuit board (see "Jumper JMP7" on page 43).	$\begin{aligned} & \mathrm{LO} \\ & \mathrm{HI} \end{aligned}$

Positioning Parameters
For a better understanding of the parameters for linear and incremental positioning the main settings are shown graphically in the following two figures.

Fig. 1.14 Parameters for linear positioning

Fig. 1.15 Additional parameters for incremental positioning

Relevel. Limits Relevelling during unloading:

- During unloading the car moves up.
- If the car moves more than the value Limit. DN ON from the levelling position, relevelling downwards starts at speed Vn.
- If the car is less than the value Limit DN OFF from the levelling position relevelling is switched off and the car decelerates so it is levelled exactly.
- Parameter Limit DN Du can be set as desired. It controls switching on of the relevelling process. Parameter Limit. Did DFF must be assigned according to the braking distance of the relevelling speed. It must be optimised until the car relevels exactly.
- Parameter init Dit must always be larger than parameter Limit DH DFF.

This also applies to relevelling upwards.

Fig. 1.16 Adjusting relevelling

1.6 MAIN MENUE - Calls

Menu item	Description	Setting range
Call Floor Config	Landing call program for each floor: - No Button: No landing button available. - DOWNcollect: One button for downward calls available. - UP-collect: One button for upward calls available. - Two button: Buttons for upward and downward calls available. - STOPcollect: Upward and downward calls use the same button.	No Button ... STOPcollect
Call Floor Door function	Door program for each floor: - Single: Only one shaft door available. - Selective: Shaft doors are handled selectively. - Order: Locked shaft doors are handled in the specified order. - Sequence: Locked shaft doors are handled following the order the calls were issued. - Through: All shaft doors are handled simultaneously.	Single ... Through
Call Floor Door	Door program for each car door: - X: Door deactivated - >A<: Door A active, default position closed. - <A>: Door A active, default position open. The same settings apply to car doors B and C. If an $\%$ is entered the landing and in-car calls for that side of the door on that floor are locked.	>A< ... X
Special Call Mode	Call programs for landing and in-car calls (see "Special Call Mode" on page 139).	Standard Non-Collective Single-Call Mode
Lift-Boy Mode	Activate Lift-Boy Mode (see "Lift-Boy Mode" on page 140).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$

Special Call Mode Pending calls can be processed in three different ways:

Setting	Method
Sturard	Landing and in-car calls are collected.
Wormandetive	- Only one call at a time is accepted. - The car is reserved as long as it is moving or a door is open. - Landing calls are locked when the car is reserved.
Sinele-cir mode	- Only one call at a time is accepted. - The car is reserved as long as it is moving or a door is open. - If the car is reserved landing calls are collected but not processed. - When the car is released the oldest call will be processed first.

Lift-Boy Mode The Lift-Boy Mode requires a lift boy to be present at all times.

- The Lift-Boy Mode can be activated permanently with parameter itt Eat mode or temporarily with FPM input X4.34 (see "Pin-34 Functn" on page 129).
- Landing calls are acknowledged but not processed automatically.
- Each acknowledged landing call will be confirmed on the in-car panel with a flashing of the corresponding in-car call and a short sound of the buzzer (FPM output X4.38 "Display-2").
- The lift boy processes the landing calls one after the other by following the flashing in-car calls.

Settings:

- Fin- 34 Fumtin = 2 (see "Pin-34 Functn" on page 129) if the Lift-Boy Mode should only be activated temporarily with a key switch.
- Lift-Ege mode = On to activate the Lift-Boy Mode permanently.

- Lam- Gwn Disf = bbbebeb (see "Loading Function" on page 129)

1.7 MAIN MENUE - System

Menu item	Description	Setting range
Time-Date Clock Setting	Time of the FST-Controller. Must be checked during each service and adjusted if necessary. If the time is not set correctly the time stamps of the error storage are useless.	14:34:12
Time-Date Date Setting	Date of the FST-Controller. Must be checked during each service and adjusted if necessary. If the date is not set correctly the time stamps of the error storage are useless.	23:01:01
Time-Date Daylight Saving	Rule for automatic adjustment of daylight saving time.	Off no automatic change European system USA system
Password Setting Level 1	Password for security level commissioning: Unlimited access and editing rights. Must be checked during each service and adjusted if necessary. If the time is not set correctly the time stamps of the error storage are useless.	0000 ... 9999
Password Setting Level 2	Password for security level customer service: Limited access and editing rights. See "MAIN MENU" on page 148.	0000 ... 9999
Password Setting Level 3	Password for security level maintenance: Limited access and no editing rights. See "MAIN MENU" on page 148.	0000 ... 9999
Language	Language of the LC-Display and the FST Menus.	Deutsch English
Recorder Recorder RESTART	Start recording. Depending on the event channel activated certain internal events are recorded with date and time. If a PC-Card is inserted the recording is stored on the card. Short recordings (a few minutes) can also be performed without a PC-Card (see "Event Channels" on page 143).	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Recorder Recorder STOP	Stop recording.	$\begin{gathered} \Rightarrow \text { YES } \\ \text { NO } \end{gathered}$
Recorder - Recorder CONTINUE	Continue stopped recording.	$\begin{gathered} \Rightarrow \text { YES } \\ \text { NO } \end{gathered}$
Recorder Filter Setting Detail	Enable event channel "Detail" for recording. See "Event Channels" on page 143.	ON OFF
Recorder Filter Setting Statistics	Enable event channel "Statistics" for recording. See "Event Channels" on page 143.	ON OFF
Recorder Filter Setting Group Statistic	Enable event channel "Group Statistic" for recording. See "Event Channels" on page 143.	ON OFF
Recorder Filter Setting Drive Curve	Enable event channel "Drive Curve" for recording. See "Event Channels" on page 143.	ON OFF
Recorder Filter Setting Remote Activity	Enable event channel "Remote activity" for recording. See "Event Channels" on page 143.	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$

Menu item	Description	Setting range
Recorder Filter Setting RIO Traffic	Enable event channel "RIO Traffic" for recording. See "Event Channels" on page 143.	ON OFF
Recorder -Stop-when-full	Determines if recordings stops when the PC-Card is full. Otherwise recording continues at the start of the card (endless loop).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Update FST	Update the FST software with a PC-Card.	$\begin{gathered} \square \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Update GST	Update the GST software with a PC-Card.	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Update LON-Modules	Update all connected LON-Modules if a new software version is available on the PC-Card.	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Config --> Backup	Create a backup copy of the current FST configuration for storage in an internal buffer.	$\begin{gathered} \hookrightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Config <-- Backup	Load the FST configuration from the internal buffer as current FST configuration. All parameters will be overwritten. Only activate this parameter after consulting NEW LIFT!	$\begin{gathered} \zeta \mathrm{YES} \\ \text { NO } \end{gathered}$
PC-Card Tools Config --> Card	Save current FST configuration on PC-Card.	$\begin{gathered} \zeta \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
PC-Card Tools Config <-- Card	Load the FST configuration from the PC-Card as current FST configuration. All parameters will be overwritten. Only activate this parameter after consulting NEW LIFT!	$\begin{gathered} \square \mathrm{YES} \\ \text { NO } \end{gathered}$
PC-Card Tools S/Ware --> Card	Save current FST software on PC-Card.	$\begin{gathered} \square \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
PC-Card Tools Clear Card	Delete everything on the PC-Card.	$\begin{gathered} \Rightarrow \text { YES } \\ \text { NO } \end{gathered}$
Panel Test	Special function to test landing and in-car panels (see System description - Panel Test).	
FST Reset!	RESET the FST-Controller.	$\begin{gathered} \hookrightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$

Event Channels

								$\begin{gathered} \frac{n}{\tilde{j}} \\ \stackrel{y}{\tilde{j}} \\ \hline \end{gathered}$							
Detail	Detailled Trouble Shooting	X	X	X	X	X	X	X	X	X					3 Hours
Statistics	Call- and Drive-Statistics				X	X	X	X							24 Hours
Group Statistics	Call- and Drive-Statistics Group				X	X	X	X			X				24 Hours
Drive Curve	Drive Behaviour											X			1 Hour
Remote Activity	Diagnostics for PAM												X		1 Week
RIO Traffic	Disgnostics für RIO													X	24 Hours

Fig. 1.17 Event Channels of the FST-Controller

1.8 MAIN MENUE - Doors

All menu items with adjustable values can be deactivated by entering the value " 0 ".

Menu item	Description	Setting
Doors Basic Number Doors	Number of car doors.	$0 \ldots 3$
Doors Basic -Apply-ALL	The settings in botes - Select ive automatically apply to all car doors.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors Basic Cam Delay	Delay between reaching the levelling position or the zone area and dropping off of the lock-cam curve (locking solenoid for unlocking the shaft doors, FSM X6.5).	$0 \ldots 4 \mathrm{sec}$
Doors Basic Cam Time Max	Maximum activation time of the locking solenoid. Prevents the solenoid from damage in case of failures. After this time has elapsed output FSM X6.5 for the locking solenoid is switched off, independent from the state of the controller.	0010 ... 9999 sec
Doors Basic Lock Delay	Maximum delay between closing of car door contact and shaft door or locking contact when closing the doors. If this time is exceeded the error DOUR LGCE TMEDTT is displayed. The car door opens for the setcetre Time and then closes again.	$0 . . .4 \mathrm{sec}$
Doors Basic Lock Fail Max	Maximum number of consecutive lock fails (DUTE LTC TTMEUTT). All landing and in-car calls will be deleted and the 	$0 . .10$
Doors Basic Lock Fail Open	Door allocation after lock fail: "One": Only the car door last opened opens after a lock fail (BUQE LUCK THEULT). "All": All car doors open after a lock fail (DOOE LiOCK THEUUT).	ONE ALL
Doors Basic SCCT Debounce	Delay between closing of the safety circuit and activation of the drive contactors when starting (prevents contactor bouncing).	$0 . . .2 .5 \mathrm{sec}$
Doors Basic Retry Time	Opening time of the car door before closing again after a lock fail (DOUE LOEE THUDUT).	$0 . .4$ sec
Doors Basic Open Delay	Delay before opening the doors when the levelling position has been reached (see "Door times diagram" on page 147).	$0 . . .4 \mathrm{sec}$
Doors Basic Bypass t-OFF	Delay when switching off the safety circuit bypass relay K20 of the VSM.	$0 \ldots 2 \mathrm{sec}$
Doors Basic - Bypass t-ON	Delay when switching on the safety circuit bypass relay K20 of the VSM.	$0.1 \ldots 2 \mathrm{sec}$
Doors Basic -Pre-Opening	Enable approach with car and shaft doors open. This parameter can only be activated when using the A6 Safety Circuit! The following steps are required to deactivate an integrated A6 Safety Circuit: - Set Fre-DFenime = du - Set Eelevelline = WU - Disconnect power supply of the safety circuit (terminals 518, 519)	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$

Menu item	Description	Setting
Doors Basic -remains-open	If the car doors are open they will remain open until a call is placed. This parameter controls the default position of the doors (see ">A< ... X" on page 139). Only activate this parameter after consulting NEW LIFT!	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors Basic Nudging Output	FSM X6.6 ("Curve B") and FSM X6.7 ("Curve C") are used as nudging outputs for door A and B. If the photocell is interrupted longer than the time set in Dots - Selective Whete Time the door will be closed with the nudging output activated.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors Basic PhotocellLevel	Active level of photocell inputs FSM X8.8 / X9.8 and reversing contact inputs FSM X8.8 / X9.6. - HI: Normally open (photocell interrupted: 24 V on input, photocell clear: OV on input; this also applies to the reversing contact) - LO: Normally closed (photocell interrupted: OV on input, photocell clear: 24 V on input; this also applies to the reversing contact)	$\begin{aligned} & \hline \mathrm{HI} \\ & \mathrm{LO} \end{aligned}$
Doors Basic Allow DRM-Door	Enable runtime monitoring Det-DUE Fhilife after a major door failure. Prevents burning out of unregulated door drives (see "DRM-DOOR FAILURE" on page 155).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors Basic -SS-Curtain	Control of a self regulating SS-Curtain (light barrier) to replace the car doors. The self-regulation uses the FSM door relays and the safety circuit monitoring function of the controller (see System description - SS-Curtain).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors Basic -SS-CurtainWait	Duration of the SS-curtain impulse issued by the door relay of the FSM before each drive.	$0 . . .10 \mathrm{sec}$
Doors Basic WheelchairTime	Extended opening time of the car door after a disabled call on the landing panel.	$0 \ldots 255 \mathrm{sec}$
Doors Basic Selective	Is there a separate locking solenoid for each door side that must be controlled separately (selectively)? - YES: Each door side has a separate locking solenoid controlled selectively via FSM X6.5, X6.6 and X6.7. - NO: The locking solenoids of all door sides are controlled parallel via FSM X6.5.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors - Selective Type	Car door type: All common car doors are supported. No function allocated to this parameter at present.	
Doors - Selective Opening Time	Opening time of a car door without limit switch. If car doors without limit switches are used the inputs for the door limit switches must be bridged (see "FSM: X8" on page 62 and "FSM: X9" on page 63). The opening time of car doors without limit switches must be measured exactly and entered here. The value should be adjusted to 20 seconds for doors with limit switches (see "Door times diagram" on page 147).	$0 . . .20 \mathrm{sec}$
Doors - Selective Decoupling	Car doors where the door leaf can be decoupled. If this parameter is activated the controller checks the door limit switches and the safety circuit and recognizes if the door leaves are decoupled. It then tries re-coupling the door leaves by repeatedly opening the doors. This parameter can only be activated with working door limit switches.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors - Selective Decouple Max.	Maximum re-coupling attempts when the door leaves are decoupled before all calls are deleted (only relevant if Decoupline = yes).	0 ... 10

Menu item	Description	Setting
Doors - Selective Manual Door	Shaft doors are manual doors. Door C input of the safety circuit (VSM X1.5) is used to query the manual door contact (display: WhUHL DOGe OPEU).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors - Selective Man. Door Deb.	Debounce time of the manual door contacts. This parameter prevents "scatter" at the locking solenoid output when starting due to bouncing manual door contacts.	$0 \ldots 5 \mathrm{sec}$
Doors - Selective Nudging	If no nudging outputs are used to decrease the closing speed of the doors during nudge time (Whemine Dutmit wit pulsed nudging can be triggered. The door close call is issued as a pulse so the door closes in steps. The Cycle time of the nudging pulses can be set here. If the photocell is interrupted longer than the time set in bors - Selective Whete Ti me the door will be closed with pulsed nudging.	$0 \ldots 6 \mathrm{sec}$
Doors - Selective Endswitches	The car door has end switches (limit switches). - YES: Connect car door limit switches to FSM X8 and X9. Set Demime time to 20 seconds. - NO: Bridge limit switch inputs on FSM X8 and X9 with +24 V and set Demine time. See "FSM: X8" on page 62, "FSM: X9" on page 63 and "Door times diagram" on page 147.	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors - Selective Photocell	Maximum number of consecutive reversing cycles of the car door caused by photocell interruptions before a forced closing (nudge time). This parameter is normally set to 0 (function disabled). Only set this parameter to a value higher than 0 after consulting NEW LIFT!	$0 \ldots 10$
Doors - Selective PhotoCell Xtn	Internal extension of the photocell signal by the controller software. This parameter enables complete opening of the door after a photocell interruption.	$0.0 \ldots 10.0 \mathrm{sec}$
Doors - Selective Open Hold Tim	Time doors are held open when there is no in-car or landing call. This parameter is only effective if no further calls are pending. The opening time of the car doors with pending calls is controlled by min. heit Lending wime wit. C.er. (see "Door times diagram" on page 147).	2 ... 250 sec
Doors - Selective Reversing Tim	Opening time of the car door after a reversing cycle.	$0.0 \ldots 20.0 \mathrm{sec}$
Doors - Selective Deenergize	The car door receives no current when in the limit position OPEN (no UP-signal).	$\begin{aligned} & \text { YES } \\ & \text { NO } \end{aligned}$
Doors - Selective Change Delay	Delay when switching the door relay (from door open to door close and vice versa). This parameter prevents short circuits caused by too fast switching of doors using three-phase AC.	0.1 ... 2.0 sec
Doors - Selective Nudge Time	Time before nudging (forced closure) starts when the photocell is permanently blocked. Nudging will ignore the signal from the photocell. There are two methods for nudging: - Nudging output activated (reducing closing speed at the door controller) if Whatime Dutmit $=\mathrm{YE}$ is set. - Pulse command if Wefing Cutput = Wiand the pulse duration in whem ine are set.	$0 \ldots 300 \mathrm{sec}$
Doors - Selective Min. Wait Landing	Minimum wait time of the car at a floor after following a landing call (see "Door times diagram" on page 147).	$0 . . .60 \mathrm{sec}$
Doors - Selective - Min. Wait Car	Minimum wait time of the car at a floor after following an in-car call (see "Door times diagram" on page 147).	$0 \ldots 60 \mathrm{sec}$

Door times diagram

(1) Car has reached level position, Drive is stopped (resp. Car has reached door zone)
(2) Car Door(s) start opening
(3) Car Door is fully opened (The Deening Time should be adjusted to 20. Sec. for doors with Limit Switches)
(4) Car Door starts closing again, if there are further calls
(5) Car Door starts closing again, if there are no further calls

Fig. 1.18 Door times of the FST-Controller

1.9 MAIN MENU

Menu item	Description	Setting
Lock MENU	Close main menu: Access to the menu is only granted with the password for the required security level.	\leftrightharpoons YES NO

Example: If a password is set to enable access to a part of the menu for e.g. maintenance work, a password must be set for the other security levels as well. Example:

Level in 1234
Level 2" $2 Q 2$
Level उ: bebe
In this case all parameters of the maintenance level could be accessed. The parameters of the customer service level are protected by the password $2<2$. Unlimited access is granted when entering the password 1234.

1.10 TEST MENU

Menu item	Description	Setting range
Fault Reset	Reset runtime failures that caused the system to stop. All error messages starting with Deti- shut down the system (error LED illuminates). The shutdown can be reset with "Fault Reset".	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
Door	Lock or unlock car doors (during maintenance work). Locked car doors are marked with an X after the door letter in line C of the FST display (see "Statusmeldungen in Zeile C" on page 14). The door lock remains even when switching the controller on and off.	C Lock Unlock
Test Drive	Place calls using the FST keypad. With test drive activated line C of the FST display shows $\operatorname{TEFEt}=\quad=$. Select the target floor using keys $\sqrt{1} /$. Execute the call by pressing.	ON OFF
Auto Test Drive	Trigger automatic generation of in-car calls (see MTH IETU - Contis - futo Test Drive page 118). With automatic test drive activated line C of the FST display shows T.	ON OFF
Service Mode	In service mode external error messages are suppressed (e.g. collective error messages). In Service Mode line B of the FST display shows GEUTEE MODE:	ON OFF
Endswitch Test Top	Slow travel to the top limit switch. This test cannot be started from the top floor! After starting the test with YES button must be pressed until reaching the limit switch (dead man control).	$\begin{gathered} \Rightarrow \text { YES } \\ \text { NO } \end{gathered}$
Endswitch Test Bot	Slow travel to the bottom limit switch. This test cannot be started from the bottom floor! After starting the test with YES button \square must be pressed until reaching the limit switch (dead man control).	$\begin{gathered} \hookrightarrow \text { YES } \\ \text { NO } \end{gathered}$
V-Mon. Test Top	Test speed monitoring at the top. This test can only be performed if the speed monitoring function is enabled (see Mhtherd - Drive - End Su: Speed tonn page 114)! This test cannot be started from the top floor! After starting the test with YES button must be pressed until the end switch speed monitoring function reacts (dead man control).	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$
V-Mon. Test Bot.	Test speed monitoring at the bottom. This test can only be performed if the speed monitoring function is enabled (see MHM MEM - Drive - End Gu: Geed Mou: page 114)! This test cannot be started from the bottom floor! After starting the test with YES button must be pressed until the end switch speed monitoring function reacts (dead man control).	$\begin{gathered} \hookrightarrow \text { YES } \\ \text { NO } \end{gathered}$
DRM Test	Testing runtime monitoring.	$\begin{gathered} \Rightarrow \mathrm{YES} \\ \mathrm{NO} \end{gathered}$

Menu item	Description	Setting range
Buffer Test Up	Runs into the counterweight buffer at nominal speed. This test can cause damage to the car. Only perform this test after consulting NEW LIFT! This test cannot be started from the top floor! After starting the test with YES button must be pressed until reaching the buffer (dead man control).	$\begin{gathered} \square \mathrm{YES} \\ \text { NO } \end{gathered}$
Buffer Test Down	Runs into the car buffer at nominal speed. This test can cause damage to the car. Only perform this test after consulting NEW LIFT! This test cannot be started from the bottom floor! After starting the test with YES button (E must be pressed until reaching the buffer (dead man control).	$\begin{gathered} \square \mathrm{YES} \\ \text { NO } \end{gathered}$

6 Error List

The FST-Controller stores up to 100 event and error messages. These messages can be called up on the user interface of the FST, with the PCCard or via remote data transmission at any time.

6.1 LC-Display

```
ERROE E06BG%6046]
26.05 10418:26 [612]
DQot Close F=iled
FLOURES एBE EGI TBE
```

A	Event/error no. 37 of 40 total
B	Date / Time / Message Code
C	Text description of event/error
D	Floor / Generated signals (see "Positionsmeldungen Kop: Virt=0b Real=00" on page 22) / actual signals (see "Positionsmeldungen Kop: Virt=0b Real=00" on page 22) / information byte Infobyte1 (see "Error messages" on page 153)


```
\(26.091016 \pi 26121\)
Dour Close Filied
```


A	Event/error no. 37 of 40 total
B	Date / Time / Message Code
C	Text description of event/error
D	Information bytes: Infobyte2 .. Infobyte8

6.2 Keypad functions

$\boxed{\square}$	Switch to 2nd to 8th information byte
$\boxed{\Lambda}$	Back to first screen
$\boxed{s}+\sqrt{\top}$	Scroll error list up
$\boxed{s}+\sqrt{\square}$	Scroll error list down

6.3 Event messages

Code	Message	Description	Reason
120	COLDETRT	Power supply of the FST was interrupted and is back on.	- The FST-Controller was switched off and on again on the fuse or the main switch. - There was a power failure.
129	IWEPGTTOMTH ThEPGTTOMGF	Inspection work is being carried out.	The inspection switch on the car roof is set to INSPECTION.
131	Foue Lost	Failure of the 24 V power supply.	The system has been shut down or the power supply is faulty.
13	RETUTE RESET	The FST-Controller has been reset by the GST Group Controller.	The FST-Controller has been reset through the serial interface.
138	GRTBRATGD-GTRT CATERATTOHOK	Calibration progress is displayed.	A calibration drive has been triggered.
134	LERE DRTUETRET LERQ DRTUEGK	Learn drive progress is displayed.	A learn drive has been triggered.
136	GOFTUPE UPD日TE	The software of the FST has been updated with a PC-Card.	
136	EURCUHTTON-DN EURCHTMOTGF EURGHTTOU-GK	An evacuation drive has been carried out.	The evacuation signal on a programmable input/output has been active.
13	रो-EETML OK	DCP interface X12 in operation.	The serial DCP interface X12 between FST and frequency converter has been initialised correctly (e.g. after switching on).
136	WणUTOR STGM - On WUWTOR STGUP -GF	State change on the programmable "Monitor" input.	The programmable "Monitor" input has changed its state. This input can be used to enter state changes of any signal in the error storage (see "Programmierbare Ein-/Ausgänge" on page 155).
139	GPRON OUT-ON GPCOU OT-GFF	State change on the "Apron Monitoring" input.	The state of the electronically monitored apron for small shaft pits is entered in the error storage as a message.

6.4 Error messages

Code	Message	Description	Reason
1	HHI	Major CPU error determined by Watchdog-Supervision.	internal error
3		"ON" and „OFF" states of the emergency device that has triggered are displayed.	Interruption of the safety circuit before terminal VSM X1.6. All safety circuit inputs of the preselection module are idle.
5	DRTUE-EDTT	Error during start up of drive process.	internal error
6	De¢temfthmot	Major CPU error in drive process area determined by WatchdogSupervision.	internal error
7	DeTue-mer	Error during transmission of data relevant for drive process.	internal error
9	OPEN DOTE LOCE	Door contact open while the car is moving. Infobyte2: Safety circuit status: digit 1: Bit 0-3 digit 2: Bit 4-7 bit 0 .. 2: not used bit 3: Emergency stop bit 4: Door contact C bit 5: Door contact B bit 6: Door contact A bit 7: Locking device ("0" = interrupted, " 1 " = closed)	Safety circuit of the door circuit has been interrupted while the car was moving. Infobyte2 shows if the interruption has been caused by a car or a shaft door.
10	MTSED Thet	When approaching the target floor the programmed levelling position was not reached or exceeded.	- Drive is not working accurately or load dependant. - Increase crawling distance (see "Crawl Distance" on page 133). - Carry out another calibration run. - Check switch off points before levelling (see "Level UP" on page 132).

Code	Message	Description	Reason
11	Dote ofth Fhine	Car door does not open. Infobyte2: Safety circuit status: digit 1: Bit 0-3 digit 2: Bit 4-7 bit 0 .. 2: not used bit 3: Emergency stop bit 4: Door contact C bit 5: Door contact B bit 6: Door contact A bit 7: Locking device ("0" = interrupted, "1" = closed)	- Check door drive - Check wiring of safety circuit - Check operation of door relays on FSM - Check operation of door limit switches (+24 V must be supplied to FSM X8.2 and X9.2 to open the doors)! - Infobyte2 shows the state of the safety circuit at the time of the error message.
12	DUR CLTE Fhan	Car door does not close. Infobyte2: $0=$ Door A $1=$ Door B $2=$ Door C Infobyte3: 1 = fully open, limit switch OPEN is active 2 = does not close all the way, limit switch CLOSED is not active	- The car door is blocked mechanically or electrically. - Check operation of door relays on FSM. - Check operation of door limit switches (+24 V must be supplied to FSM X8.4 and X9.4 to close the doors)!
13	DOQe LGCK RETR CMT	Error during closing of doors. Infobyte2: $\begin{aligned} & 0=\text { Door A } \\ & 1=\text { Door B } \\ & 2=\text { Door C } \end{aligned}$ The number of lock attempts is displayed under MHT MEDEE * Doors + Doore Emeic bock funt .	The shaft door contact (lock) does not close even after n attempts.
14	DRt-GTRT PROELEM	Reset TET MEU - Funt Reset.	The car does not start moving even with pre-selection active.
15	DRt-ETUE WUNTOE	Monitoring or drive error. No movement of the car could be determined during the drive. Reset TET MEU - FUIt Reset.	The encoder position does not change even with pre-selection active. - The encoder is faulty. - No electric connection to encoder. - The drive does not move.

Code	Message	Description	Reason
16	Detratuote Fhuume	Plausibility testing of car position with the encoder is faulty. Reset TET MEUU - FUIt Reset.	- The encoder is faulty. - Check electric connection of the encoder. - During commissioning: Check direction of rotation of the encoder and carry out "Set Floor 0".
17	Detrat Come Fhut	Communication between the FSTController and the FSM Car Control Module is faulty.	- Plug-in connections of the trailing cable are not plugged or loose. - Rupture in trailing cable. - Car Control Module FSM faulty. - Check jumper position on the car control module (see "Assigning the car in group mode" on page 60).
18	Demfab Floue greb	Reset TEST MENU - FUIt Reset.	The delay control circuit at the top and bottom limits has triggered (see "End-Sw.Speed Mon." on page 114).
19	Dethrsenta zone	No zone message available. Reset TEST MUU - FUIt Reset.	The car has reached a levelling position but does not receive a zone message from the A6 Safety Circuit. Check A6 Safety Circuit and zone solenoids.
20	DRPmere Fhande	The brakes do not react or cannot be released. Reset TET HEW - FRIt Reset.	- The brake does not release even with pre-selection active - The brake does not close even with the car stopped. Monitoring via input VSM X4.7 (see "Brake Monitoring" on page 113).
21	Detromot Fhunde	Temperature monitoring of the drive has triggered.	Motor overheated. Monitoring via input VSM X4.5 (see "Motor Monitoring" on page 113).
22	DRYDRED STR	The input signal "Forced Stop" on a programmable input has been active. The car is shut down on the floor with the door open.	Please refer to the system specific wiring diagrams for information on which signal has triggered the forced stop. Also see "Programmierbare Ein-/ Ausgänge" on page 155).
2 S	Detrmatamut	Exceeding the top floor according to EN 81 (for hydraulic lifts). Reset TESTMEWU - FEnit Reset.	The top emergency limit switch has triggered. The contact is sampled by terminal VSM X1.5 ("TC").
24	Detrone Fhinue	The car door cannot be moved. Reset TEST MEU - FEnt Reset.	Door control is active but the car door does not move. The controller shuts down the system (see "Allow DRM-Door" on page 145).

Code	Message	Description	Reason
G	GUTHUTOE MONTtorte	Fault in motor contactor. Reset TET MEU - FEIt Reset.	The main contactors do not release after the levelling position is reached. Monitoring via input VSM: X4.6 (see "Contactor Monitoring" on page 114).
$\underline{7}$	SIP OUTMDE LEUE	Unexpected car movement out of the stopping position.	The drive does not stop at the levelling position even with preselection disabled. - The deceleration distance of the drive is too long. - The drive brake activates too late. - Check encoder function.
26	GLP GUTSDE ZDE	Unexpected car movement out of the zone.	The drive does not stop at the levelling position even with preselection disabled. - The deceleration distance of the drive is too long. - The drive brake activates too late. - Check encoder function.
2	DRTE $\mathrm{CHEm-ERQE}$	Error during transmission of drive data from/to drive processor	internal error
30	EUE-TF TMEUUT	Fault in bus interface.	internal error
II	GTRT-GEDET	Drive start sequence cancelled.	The drive cannot be started. No return signals from drive or signals delayed. - See VSM X4.7 brake monitoring. - See wiring diagram FST X7.11. - See "Brake Delay" on page 113.
3	GTOP-EEDET	Drive stop sequence cancelled.	The drive cannot be stopped. No return signals from drive or signals delayed. - See VSM X4.7 brake monitoring. - See wiring diagram FST X7.11. - See "Brake Delay" on page 113.
ड	REAEALTM GEDET	An error has occurred and the relevelling process has been cancelled.	- Check drive and pre-selection. - Check safety circuit bridging. - Check bypass relay K20 on the pre-selection module. - See "Bypass t-OFF" on page 144.
34	Erpme manure	Safety circuit bypass not available despite zone message.	- Check K20 of the VSM. - Check wiring of safety circuit. - Check safety circuit. - See "Bypass t-OFF" on page 144.

Code	Message	Description	Reason
उ5	DUQe LOEC TMUEUT	Door lock timeout is not long enough.	The car door is closed but the lock contact has not closed in the time set. - Check shaft doors mechanically (smooth running). - Check door lock contacts. - Increase door lock timeout (see "Lock Delay" on page 144).
उ	GRe LTGHT Fhture	Power sensor indicates car light is not working.	- Check car light. - Check power sensor on FSM (see "FSM: X14" on page 64).
3	RELMATOE ERQR	Error message from the frequency converter when using a converter with serial control.	Check error list of the frequency converter. The number of the regulator error corresponds to the error code in the documentation of the frequency converter.
36	REFLL PUP TMEDUT	Error during refilling of the hydraulic counterweight.	The cut-off pressure for refilling has not been reached within 30 seconds. Check function and control of the refill valve.
8	GPETY CRTATM ERE	The safety curtain has been interrupted while the car was moving.	Check function and control of the safety curtain (see "SS-Curtain" on page 145).
40	GhETY CRTATM FRT	Error during test of safety curtain.	The FST-Controller issues a test signal for the safety curtain via FSM X10.2 before each drive. The safety curtain acknowledges the test signal with an interruption of the safety circuit (VSM X1.3). - Check operation of the safety curtain. - Check duration of the test impulse in THT HEUDets - Dote Emsic - SE-Turtimbit (see "SS-CurtainWait" on page 145).
41	M2-SETML OFF	No serial connection to the frequency converter (FST X12, DCP).	- Check connection cable between FST X12 and frequency converter. - Check settings of the frequency converter (DCP03).
42	א-12 Sempl Em	Serial connection to the frequency converter is faulty (FST X12, DCP).	- Check connection cable between FST X12 and frequency converter. - Check shield of the connection cable.
43	HFGMTLEE HFS FGTLUEGOU	State change at the programmable input "UPS FAILURE" for monitoring UPS error messages.	Check operation of the UPS.

7 Index of Key words

Numerics24V LOW!11
A
A6 Safety Circuit 52
Absolute value encoder 43
absolute value encoder 15
Action 5, 101
additional pre-selection relays 55
ADM 82
X1 83, 87
X2 84, 88
ADM I landing button module 82
ADM unconfigured! 28
ADM-Bus Mask 121
Alarm horn 47
Allow DRM-Door 145
Anti Nuisance 122
Apply-ALL 144
Approaching 144
associated bus 38
Auto Test Drive 149
Auto test drive 118
auto test drive 27
Auto-Orien. 135
AUXILIARY 13
Auxiliary control 53
B
BOBURunoff 135
Boot version 30
Bottom Flr. Car 120
Bottom Flr. Hall 120
Brake Delay 113
Brake Monitoring 113
Brake monitoring 45
bus plan 38
Bypass t-OFF 144
Bypass t-ON 144
C
cable length 38
cable lifts 39
Cal. V-tolerance 117
Calibration abort! 28
CALIBRATION DRIVE 12
Calibration drive 30, 117
Cal-Results - 134
Cam Delay 144
Cam Time Max 144
Car bus 46
car call button extension 69
Car doors 144
Car Light 122
Car light 62, 64
Car Light "OFF" 47
CAR NUISANCE DETECT! 29
car position 14
Car Prio. Type 117
car speed 14
Car ventilator 62, 122, 128, 132
Card Reader 123
CB/CT-Level 135
Change Delay 146
Change Time 114
Checking Update File 29
Chime 123
circuit documentation 38
Clear Card 142
Clock Setting 141
CLOSE = A+B 123
Commissioning 35, 117
compatible 37
Component overview 38
Config <-- Backup 142
Config <-- Card 142
Config --> Backup 142
Config --> Card 142
CONFIG TRANSFER ERR! 28
CONFIG TRANSFER OK! 28
Contact voltage protection 7
Contactor monitoring 114
Control 134
control box 58, 65
Corr.Bottom 135
Corr.Top 135
correction switches 43
Correct-levelling 117
Counter values 111
Crawl Distance 133
Ctrl. 119
D
CONFIG 28
data packets 15
Date Setting 141
Daylight Saving 141, 143
decoding 17, 24
Decouple Max 145
Decoupling 145
Deenergize 146
Default position of doors 139
Depart.Arrows Max 126
departure 85
Departure Arrows 126
Detail 141
device status 34
diagnosis 15
diagnostic message 10
Diagnostic messages 10, 15, 32
DIN EN 81 7
DIN VDE 0100 7
Direction 126
direction display 27
Direction of rotation 132
direction of travel 85
Display-0.. 2 122
Divider-Door 123
DMF 13
Door movement counter 111
Door movements 111
Door type 145
DoorC=Emerg-EndSw. 126
DOOR-NUDGING! 29
Doors 144
doors without limit switches 63
drill-hole dimensions 37
Drive counter 14, 111
Drive Curve 141
drive mode messages 27
drive processor 34
Drive Speeds 113
Drive type 113
Drives 111,113
DRM Test 149
DRV-TEST FINISHED! 29
DRV-TEST STARTED! 29
dual door mode 66

E

EAZ 122
EAZ Configuration 120
EAZ Text 120
electrical isolation 39
Electromagnetic compatibility 8
EMC 8
Emergency 42
Emergency power supply unit (HSG) 60
Emergency stop 114
Emergency stop recognition 42
EMERGENY OPERATION 28
EN 55011 8
EN 61000-4-2/1995 8
EN 61000-4-3/1997 8
EN 61000-4-4/1995 8
EN12015 8
EN12016 8
encoder failure 16
Encoder type 133
encoder-B signal 42
encoder-B simulation 42
END-SWITCH TEST 11
Endswitch Test Bot 149
Endswitch Test Top 149, 150
Endswitches 146
ERROR 34, 44
Error list 151
Error message 33
Error Messages 112
Error messages 153
Error Storage 111, 151
ES-SPEED MON. TEST 11
EVACUATION 11
Event Channels 143
Event messages 152
EXIN1 15
EXIN2 15
extended pre-selection 57
F
Factory number 121
Fault Reset 149
Fax 118
Fax number 119
FAX/SMS NOT SENT! 28
FAX/SMS SENT OK! 28
FILE NOT FOUND 28
FILE TRANSFER ACTIVE 12
Filter Setting 141
fire 85
Fire Main Floor 124
FIREMAN 11
FIREMAN MODE 12
Fireman Options 123
Flag 119
Flags 119
flash memory 26, 39
Floor-locking 118
Flr Offset-Car 121
Flr Offset-Landing 121
FPA 78
X4 79
X5 79
X6 79
X7 80
FPE 73
X2 74, 76
X3 77
FPE car control panel extension module 73, 78
FPM 65
X3 69
X4 71
FPM car operating panel module 30, 65
Front panel 9
FSM 58
X10 63
X12 63
X2 61
X3 61
X4 62
X6 62
X7 62
X8 62
X9 63
FSM car control module 30, 58
FSM X6 15
FST
X11 48
X12 48
FST Installation \& Commissioning 6
FST Manual 6
FST Menus 101
FST Quick Guide 6
FST Reset! 142
FST Software Update 28
FST-Controller 39
FULL LOAD 13
Further information 6

G

General Safety Regulations 7
GND-PE coupling 42, 44
group controller 36
Group Floor Offset 121
Group Member 121
Group mode 60, 67
Group operation 121
Group Settings 121
Group Statistic 141
GST Group Controller 60, 67, 121
GST Manual6
GST UPDATE COMPLETE! 28
GST-Menu 121

H

H8IN1 .. 15
halogen free 95
Handling electronic components 8
Hardware version 30
HHT handheld terminal 35
Holding device 114
holding device 15, 26
HOMING ACTIVE 13
humidity 40
hydraulic lifts 39
I
I/O Error - 120
ID 30, 121
Identification 30
in-car button panel $65,69,71,74,76,79,80$
in-car call 27, 32
in-car control 27
Incremental Positioning 134
Incremental value encoder 43
Information page 30, 32, 33
information texts 28
Input EXIN2 22
input H8IN1 23
Insp. Door Test 125
Insp.DOWN 133
Insp.FAST 133
Insp.UP 133
INSPECTION 12
inspection control 63
INSTALLATION MODE 13
Installation Mode 117
installation site 38
J
Jumper J2 51
Jumpers 42
Jumpers - FPM 66
Jumpers - FSM 59
Jumpers - FST 42
Jumpers - VSE 56
Jumpers - VSM 50
K
Key combination 5
Keypad 9, 39
Keypad functions 6, 32, 151
L
Landing buttons 124
landing call 27
LANDING CALLS OFF 11
Landing Chimes 121
landing control 27, 32
Landing control "OFF" 47
LANDING CONTROL OFF 11
Landing DOWN 132
landing panel 82
Landing Prio. Type 117
Landing UP 132
Language 141
LC-Display 6, 9, 39, 151
Learn drive 117
LEARN DRIVE ACTIVE 12
LEARN DRIVE FAILURE! 28
LEARN START FAILURE! 29
LED 112
LEDs 61
LEDs - ADM 83, 87, 90
LEDs - FPM 68
LEDs - FSM 61
LEDs - FST 9, 34, 44
LEDs - VSE 56
LEDs - VSM 51
Level 14
Level DOWN 132
Level UP 132
levelling 14
Levelling position 132
Lift ID-Name 121
Lift ID-Number 121
LIFT OFF 12
Limit DN OFF 134
Limit DN ON 133
Limit UP OFF 133
Limit UP ON 133
Line A 10
Line B 11
Line C 14
Line D 27
LMS 118
loading button 14
Lock Delay 144
Lock Fail Max 144
Lock Fail Open 144
LON bus 38, 93
LON Configuration 118
LON-EAZ 120
M
Main menu 32, 101
Main menu and test menu 30, 33
Main screen 10, 32
Manual Door 146
MASK 119
Measures 7
memory 14
Menu tree 101
message packets from car control module 15
messages 10
metal nut 44
Min. Wait Car 146
Min. Wait Landing 146
Modem 39, 47, 118
Monitoring 52
Motor Monitoring 113
Motor monitoring 45
Motor Run-on 113
motor state 15, 20
motor states 20
Motor-Hours 14, 111
N
next possible stop 15, 21
NO SIGNAL 28
NO SIGNAL 28
NOT FROM END FLOOR! 29
NOT IN FLOOR-O! 29
NOT IN THE ZONE! 29
Nudge Time 146
Nudging 146
Nudging Output 145
Number Doors 144
0
ONLY FROM END FLOOR! 29
OPEN = A+B 123
Open Delay 144
Open Hold Tim 146
Opening Time 145
Option bus 46
Opto-coupler 49
order number 30
Orien delay 135
ORIENTATION 13
Original packaging 8
OVERLOAD 13
P
Parameter 101
Parametrising 101
Park Drive 117, 118
PARK DRIVE ACTIVE 13
Park Drive Programs 126
Password 101, 141, 148
PC-Card 26
PC-CARD EMPTY! 29
PC-CARD FLASH TYPE?? 29
PC-CARD LOW BATTERY! 29
PC-CARD OK! 29
PC-CARD REMOVED! 29
PC-Card slot 15, 39
PC-Card Tools 142
PC-CARD TYPE????! 29
Photocell 146
photocell 14
PhotocellLevel 145
pin assignments 37
plastic nut 44
Please wait! 28
Port 119
Position ABS 132
Position encoder 46, 132
position messages 15, 21
Position REL 132
Positioning 132
Power supply 47
Pre-Opening 144
Pre-selection 52
pre-selection relay 20
PRIO CAR ACTIVE 28
PRIORITY CAR 13
Priority car 117
PRIORITY LANDING 13
Priority landing 117
priority landing 85
Program 101
Programmable input/output 47
Programmable inputs/outputs 47, 119
R
RAW 119
RAW Register 132
Recorder 141
RECORDING NEW START! 29
RECORDING RE START! 29
RECORDING STOPPED! 29
Regulation for lift systems, AufzV 7
Relevelling 113, 133
remains-open 145
Remote Activity 141
remote shutdown 85
repeater 39
Resolutn. 132
Retry Time 144
reversing contact 14
Reversing Tim 146
RIO Traffic 142
RS-232 interface 47
RS-232 interface (2-wire) 48
RS-422 interface 48
RS-485 interface 48
RUN 34, 44
S
CONFIG 28
S/Ware --> Card 142
Safety circuit messages 10, 11
Safety circuit poll 51
SAFETY CURTAIN 12
Safety measures 7
Safety Regulations 7
SCCT Debounce 144
Search LON Modules 118
Security level 31, 101
Security level commissioning 101, 141
Security level customer service 101, 141
Security level maintenance 101, 141
SEND FAX 11
Serial connection to frequency converter 27, 157
SERVICE ACTIVE 13
SERVICE REQUIRED! 13
set / current speed 14
Set Floor [n] 117
set speed 15, 22
Setting doors 59
setting lift car doors 66
Show LON Modules 118
Sign 5
Signs and symbols 5
single door mode 66
smoke detector 85
Software Update 142
Software version 30, 39
software versions 85
source of special drive signals 15
Special Display 125
Special params 114
Speech Output 124
Speech-Codes 124
Speed correction function 114
SS-Curtain 145
SS-CurtainWait 145
Standards and regulations 7
Standstill monitoring 45
Star / Delta 114
Start Method 114
Start Monitoring 113
state bytes F1 and F2 16
State messages 10, 11
state of the security circuit 21
States of the car 17
States of the pre-selection relays 20
static charges 8
Statistics 112,141
STATUS 34, 44
Status messages 10, 14, 32
Stop Max 114
Stop-when-full 142
storage 40
strain relief 93
Supply voltage 53, 62
suspension height 95
Switch 1.. 115
Symbols 5
System 141
system location 30
SYSTEM STOP 13
T
Technical Data - ADM I 82, 86, 89
Technical Data - FPE 73, 78
Technical Data - FPM 65
Technical Data - FSM 58
Technical Data - FST 40
Technical Data - LON bus 93
Technical Data - Trailing cable 95
Technical Data - VSM 49
Technical regulations for lifts (TRA, Technische Regeln für Aufzüge) 7Temperature range40
Terminal resistance 8
Terminal resistance (terminator) 93
Terminals and plugs - ADM I 83, 87
Terminals and plugs - FPE 74, 78
Terminals and plugs - FPM 69, 91
Terminals and plugs - FSM 61
Terminals and plugs - FST 45
Terminals and plugs - LON bus 94
Terminals and plugs - Trailing cable 97
Terminals and plugs - VSM 51
Terminator 8, 93
Test Drive 149
Test menu 32, 149
Time 27
Time $1 . .6$ 114
Trailing cable 53,61,64, 95
trailing cable 95
TÜV-Rheinland 49
Type verification certificate VSM 49
U
UPDATE COMPLETE! 29
UPDATE FILE NOT FOUND 29
Update GST 142
Update LON-Modules 142
Use Text 120
USER ERROR 13
user interface 9, 35
V
Ventilator 122
V-Mon. Test Bot. 149
V-Mon. Test Top 149
VSE 55
VSE pre-selection extension 55
VSM
X1 51
X3 52
X6 53
X7 53
VSM pre-selection module 49
W
WAITING TO RESET 29
Weight Sensor 15, 124
X
X100 99
Z
Zero conductor 49
zone message 14
Zone Sw.DOWN 132
Zone Sw.UP 132
zone switch B 42, 43
ZoneB Active 133
ZoneB-Hysters 135
ZoneB-Length 135
ZoneB-Level 135

NEUE ELEKTRONISCHE WEGE

Your NEW LIFT-Hotline: e-mail: hotline@newlift.de
Lochhamer Schlag 8
D-82166 Gräfelfing
Tel.: +49 (0) 89 / 89866110
Fax: +49 (0) 89 / 89866300

